
[image: Image de couverture]

[image: Page de titre : John Walkenbach, Programmation VBA pour Excel 2024 pour les Nuls (Pour Excel 2013, 2016, 2019, 2021 & 2024), Pour les nuls]

Programmation VBA pour Excel pour les Nuls
Titre de l’édition américaine : Excel VBA programming For Dummies
Publié par
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030 – 5774
USA
Copyright © 2025 Wiley Publishing, Inc.
Pour les Nuls est une marque déposée de Wiley Publishing, Inc.
For Dummies est une marque déposée de Wiley Publishing, Inc.
© Éditions First, un département d’Édi8, 2025 pour l’édition française. Publiée en accord avec Wiley Publishing, Inc.
ISBN : 978-2-412-10672-3
Code éditeur : S10672/01
« Cette œuvre est protégée par le droit d’auteur et strictement réservée à l’usage privé du client. Toute reproduction ou diffusion au profit de tiers, à titre gratuit ou onéreux, de tout ou partie de cette œuvre, est strictement interdite et constitue une contrefaçon prévue par les articles L 335-2 et suivants du Code de la Propriété Intellectuelle. L’éditeur se réserve le droit de poursuivre toute atteinte à ses droits de propriété intellectuelle devant les juridictions civiles ou pénales. »
Éditions First, un département d’Édi8
92, avenue de France
75013 Paris – France
e-mail : firstinfo@efirst.com
Site internet : www.pourlesnuls.fr
Traduction : Philip Escartin
Ce document numérique a été réalisé par Nord Compo.

Sommaire

Titre
Copyright
Introduction
Première partie - Premiers pas en VBA pour Excel
Chapitre 1 - VBA ? Quésaco
Chapitre 2 - Droit au but
Deuxième partie - Comment VBA travaille avec Excel
Chapitre 3 - Visual Basic Editor
Chapitre 4 - Les modèles objets de VBA
Chapitre 5 - Les procédures VBA Sub et Function
Chapitre 6 - L'enregistreur de macros d'Excel
Troisième partie - Les concepts de la programmation
Chapitre 7 - Les éléments essentiels du langage VBA
Chapitre 8 - Travailler avec les objets Range
Chapitre 9 - VBA et les fonctions de feuille de calcul
Chapitre 10 - Contrôler le déroulement du programme et prendre des décisions
Chapitre 11 - Procédures et événements automatiques
Chapitre 12 - Les techniques de gestion des erreurs
Chapitre 13 - Les techniques d'éradication des bogues
Chapitre 14 - Des exemples de programmation VBA
Quatrième partie - Communiquer avec vos utilisateurs
Chapitre 15 - Les boîtes de dialogue d'Excel
Chapitre 16 - Boîtes de dialogue personnalisées : les bases
Chapitre 17 - Les contrôles des boîtes de dialogue
Chapitre 18 - Techniques et conseils pour les objets UserForm
Chapitre 19 - Accéder aux macros via l‘interface utilisateur
Cinquième partie - Le grand rassemblement
Chapitre 20 - Créer des fonctions de feuille de calcul
Chapitre 21 - Créer des macros complémentaires
Sixième partie - Les dix commandements
Chapitre 22 - Dix astuces bien utiles sur l'éditeur Visual Basic
Chapitre 23 - Dix ressources (ou presque) pour Excel
Chapitre 24 - Dix choses à faire ou à ne pas faire en VBA

Introduction
Vous souhaitez aller plus loin dans l’utilisation de vos feuilles de calcul Excel en programmant des fonctionnalités avancées ? Alors ce livre est fait pour vous ! Il vous offre l’opportunité de découvrir en profondeur la programmation Excel. Même si vous ne possédez que quelques notions de base, cet ouvrage vous permettra de progresser rapidement (enfin… un peu plus rapidement) avec Excel.
Contrairement à la plupart des livres de programmation, celui-ci est écrit en français courant, accessible à tous, même aux Immortels de l’Académie française. Rempli de conseils pratiques, il évite ces informations dont on n’a besoin qu’une fois tous les 36 du mois.
Ce livre est fait pour moi ? Vraiment ?!
Les livres consacrés à Excel ne manquent pas, comme vous pouvez le constater dans n’importe quelle librairie spécialisée. Un survol rapide vous permettra de savoir si ce livre est véritablement celui que vous recherchez :
	Il a été écrit pour les utilisateurs moyens et avancés d’Excel qui désirent apprendre à programmer avec Visual Basic pour Applications (VBA).

	Aucune expérience préalable de la programmation n’est requise.

	Il décrit les commandes et contrôles les plus communément utilisés.

	Il convient aux versions 2013, 2016, 2019, 2021 et 2024 d’Excel, fonctionnant sous Windows 10 et bien sûr sous Windows 11.

	Le contenu est sérieux, mais le ton est léger.

Si vous utilisez encore Excel 2003, vous aurez hélas besoin d’un autre livre que celui-ci. En revanche, si vous utilisez toujours Excel 2007 ou 2010, l’essentiel de ce que je vous propose de découvrir devrait fonctionner sans souci particulier, mais c’est sans garantie.
Comme ce livre n’est pas un ouvrage d’initiation à Excel, et si vous ne connaissez pas très bien le fonctionnement de ce tableur, je vous conseille la lecture préalable d’Excel pour les Nuls que vous trouverez immanquablement sur le site Web de la collection pour les nuls à cette adresse : www.lisez.com
Tous les fichiers exemples de ce livre sont également téléchargeables sur le site www.lisez.com en accédant en bas de la page du livre et en sélectionnant CONTENU ADDITIONNEL.

Les inévitables conventions typographiques
Tous les livres d’informatique ont une section de ce genre (peut-être est-ce une norme gouvernementale ?). Par exemple, il vous sera parfois demandé d’appuyer sur des combinaisons de touches. Ainsi, Ctrl+Z signifie que vous devez maintenir la touche Ctrl enfoncée tout en appuyant sur la touche Z.
Les commandes des menus sont séparées par une barre. Par exemple, pour ouvrir un classeur, vous choisirez :
	Fichier > Ouvrir

Les commandes du ruban seront désignées en clair par un triptyque nom de l’onglet/nom du groupe/nom du bouton à cliquer.
Tous les textes que vous tapez sont en gras. Par exemple, il vous sera demandé d’entrer =SOMME(A1:A12) dans la cellule A13.
La programmation Excel suppose la saisie de code, autrement dit d’instructions qu’Excel devra exécuter. Ces lignes de programmation apparaissent en caractères à espacement constant, comme ici :
	Range("A1:A12").Select

Certaines longues lignes de code ne tiennent pas sur la largeur d’une page. Dans ce cas, j’utilise les caractères de continuation standard du VBA : un espace suivi d’un caractère de soulignement. Exemple :
	Selection.PasteSpecial Paste:=xlValues, _

	Operation:=xlNone, SkipBlanks:=False, _

	Transpose:=False

Le code ci-dessus peut être tapé « au kilomètre », sur une seule ligne, en omettant bien sûr les espaces précédant les soulignements, ainsi que les soulignements en question.
[image:]NdT : La plupart des commandes VBA sont en anglais. Leur première occurrence dans le livre est généralement traduite (la traduction figure entre parenthèses) à moins que le texte ne fournisse immédiatement une explication précise tenant lieu de traduction.

Vérifiez vos paramètres de sécurité
Le monde informatique peut s’avérer aussi cruel que celui dans lequel nous vivons. Vous avez certainement entendu parler des virus qui peuvent malmener votre ordinateur et vos données. Mais saviez-vous qu’ils peuvent aussi infecter des fichiers Excel ? En fait, il est relativement facile d’écrire des virus en VBA… Lorsqu’un utilisateur trop confiant ouvrira le fichier Excel, le virus se propagera à tous les autres classeurs Excel, voire à d’autres fichiers de l’ordinateur.
Au fil des années, Microsoft s’est sentie de plus en plus concernée par les problèmes de sécurité. C’est une bonne chose, à condition que l’utilisateur sache de quoi il retourne. Les paramètres de sécurité d’Excel peuvent être consultés en choisissant Fichiers > Options > Centre de gestion de la confidentialité > Paramètres du Centre de gestion de la confidentialité. Il existe tellement d’options ici qu’il se raconte que l’on n’a plus jamais entendu parler de certaines personnes qui avaient ouvert cette boîte de dialogue…
Si vous cliquez sur l’onglet Paramètres des macros (à gauche de la boîte de dialogue Centre de gestion de la confidentialité), vous trouverez plusieurs choix pour le réglage de la sécurité de votre futur code :
	Désactiver toutes les macros VBA sans notification : vous pouvez faire ce que vous voulez, les macros refuseront de s’exécuter.

	Désactiver les macros VBA avec notification : lorsque vous ouvrez un classeur qui contient des macros (du code VBA, si vous préférez), vous verrez apparaître un message vous proposant de les activer.

	Désactiver toutes les macros VBA à l’exception des macros signées numériquement : seules les macros possédant une signature numérique sont autorisées à s’exécuter (mais vous verrez quand même un message d’avertissement si cette signature n’est pas marquée comme étant approuvée par une autorité reconnue).

	Activer les macros VBA : laisse toutes les macros s’exécuter sans prévenir. Cette option n’est pas recommandée, car elle pourrait ouvrir grande la porte à du code malfaisant.

Imaginons le scénario suivant : vous passez une semaine à écrire un programme VBA d’enfer qui révolutionnera votre entreprise. Vous le testez en long et en large puis vous le transmettez à votre directeur. Il vous rappelle pour couiner que ce programme ne fait rien du tout. Enfer et damnation ! Que se passe-t-il ? En fait, il est fort probable que les paramètres de sécurité de l’ordinateur de votre directeur ne l’autorisent pas à exécuter des macros. Ou alors, il a choisi de désactiver les macros lorsqu’il a ouvert le fichier.
Que faut-il en conclure ? Ce n’est pas parce que le classeur contient une macro que cette dernière sera à coup sûr exécutée. Tout dépend du niveau de sécurité et du choix de l’utilisateur d’activer ou de désactiver les macros pour ce fichier.
Pour travailler avec ce livre, vous devez évidemment activer les macros. Mon conseil est le suivant : sélectionnez le second niveau de sécurité (Désactiver toutes les macros avec notification). Lorsque vous ouvrirez un fichier que vous avez vous-même créé, il vous suffira d’accepter l’activation des macros. Et si ce fichier provient d’une source inconnue ou dont vous n’êtes pas sûr, vous pourrez désactiver les macros, puis contrôler le code VBA pour vous assurer qu’il ne contient pas quelque chose de potentiellement dangereux ou destructeur. En général, on arrive assez vite à repérer ce genre de problème.
Une autre option consiste à choisir un dossier sécurisé. Choisissez Fichiers > Options > Centre de gestion de la confidentialité > Paramètres du Centre de gestion de la confidentialité, puis activez à gauche de la fenêtre l’onglet Emplacements approuvés. Sélectionnez alors un dossier à votre convenance. Placez-y les classeurs en qui vous avez totalement confiance, et Excel ne vous ennuiera plus avec ses messages plus ou moins angoissants. En particulier, les exemples de ce livre que vous allez bien entendu télécharger pourraient parfaitement être enregistrés dans un emplacement approuvé (si, si, croyez-moi sur parole).

Ça va sans dire, mais ça va mieux en le disant
La plupart des auteurs s’adressent à un public bien précis. La cible de ce livre est une synthèse des multiples utilisateurs d’Excel que j’ai rencontrés en personne ou dans le cyberespace. Si vous correspondez à ce lecteur type :
	Vous avez accès à un PC, que ce soit au bureau ou à la maison. Et votre ordinateur est connecté à Internet.

	Vous possédez Excel 2013, 2016, 2019, Excel 2021 ou 2024.

	Vous êtes à l’aise avec votre ordinateur.

	Vous travaillez souvent sur Excel et vous estimez en connaître davantage, sur ce tableur, que l’utilisateur moyen.

	Vous désirez réaliser avec Excel des tâches qu’il ne sait manifestement pas effectuer tout seul.

	Votre expérience de la programmation est nulle ou faible.

	Vous ne rechignez pas à faire appel au système d’aide d’Excel si vous butez sur des notions qui vous sont étrangères. Comme ce livre ne peut évidemment pas tout couvrir, consulter cette aide vous aidera à remplir les cases manquantes.

	Vous avez l’esprit pratique et des tâches précises à réaliser, d’où une tolérance plus que limitée aux ouvrages informatiques qui se complaisent dans la théorie.

	Vous êtes attiré par l’IA et pensez que Copilot, l’IA de Microsoft, pourra vous aider à élaborer des codes VBA complexes.

Icônes utilisées dans ce livre
Les icônes sont ces petits pictogrammes censés attirer votre attention sur divers points particuliers, qu’il s’agisse d’astuces, de choses auxquelles il faut particulièrement faire attention, et ainsi de suite. Vous trouverez au fil de ce livre cinq de ces icônes :
[image:]Ne passez pas les informations signalées par ce pictogramme. Ce sont souvent des raccourcis qui vous feront gagner beaucoup de temps (et vous permettront même d’éviter des heures supplémentaires au bureau).
[image:]Ce pictogramme indique des informations à mémoriser, à toutes fins utiles, au plus profond des méandres de votre cortex.
[image:]Ce pictogramme signale des informations techniques. Elles sont certes intéressantes, mais vous n’êtes pas obligé de les lire si vous êtes pressé.
[image:]Lisez attentivement ce qui est signalé par ce pictogramme. Sinon, vous risquez de perdre des données, de faire exploser votre ordinateur, de provoquer une fission nucléaire, d’entraîner la fin du monde et même, qui sait, de gâcher votre journée.

Récupérer les fichiers d’exemples
[image:]Les exemples de ce livre sont disponibles sur le Web, à l’adresse suivante : www.lisez.com. En haut à droite de la fenêtre, cliquez sur l’icône de la loupe et tapez Programmation VBA pour Excel. Dans la liste des livres qui apparaît, cliquez sur celui portant ce titre. Une fois la fiche du livre affichée, cliquez sur le bouton Télécharger de la section Télécharger les documents. Suivez les instructions de téléchargement de votre navigateur Web, puis décompactez le fichier .zip dans un dossier de votre disque dur. Vous disposez alors d’un ensemble de fichiers .xlsm dont l’utilisation est expliquée dans le fichier _Lisez-moi.txt.
Disposer de ces fichiers vous évitera un travail de saisie colossal. Mieux encore, vous pourrez modifier les modules à votre guise et faire autant d’expériences que vous le souhaitez. En fait, il est plus que recommandé de procéder à des essais. C’est en effet le meilleur moyen de se familiariser avec le langage VBA.

Et maintenant, quel est le programme ?
Comme vous avez pris la peine de lire cette introduction, autant continuer. Car vous voulez toujours devenir un programmeur émérite, n’est-ce pas ?
Si vous débutez en macros Excel, je vous conseille vivement de commencer par la première partie afin de réviser vos classiques tels que les bases de l’enregistrement des macros dans Excel. En revanche, si vous maîtrisez l’enregistrement des macros, mais que vous souhaitez mieux comprendre les coulisses de VBA, filez directement à la deuxième partie. Vous verrez alors comment fonctionne VBA, et vous découvrirez comment implémenter vos propres codes.
Enfin, si vous disposez d’une base solide en programmation et que vous souhaitiez simplement apprendre quelques techniques avancées, comme créer des fonctions et des compléments personnalisés, consultez directement la quatrième partie.

Première partie
Premiers pas en VBA pour Excel

 DANS CETTE PARTIE…

 À la découverte de Visual Basic pour les Applications.

 •

 Ce que permet de réaliser VBA.

 •

 Une session de programmation Excel « comme si vous y étiez ».

 •

 Excel et la sécurité des macros.

Chapitre 1
VBA ? Quésaco
DANS CE CHAPITRE
Introduction complète à VBA.
•
Comprendre l’utilité de VBA.
•
Points forts et limites de VBA.
•
L’actualité de VBA.
•
Préserver la compatibilité Excel.

Avant de vous lancer tête baissée dans la programmation en VBA, prenez un moment pour vous préparer. Ce premier chapitre se concentre entièrement sur l’apprentissage pratique, tout en vous fournissant des informations de base essentielles pour comprendre la programmation sous Excel. Ce chapitre établit les fondations nécessaires pour tout ce qui suivra et vous donne une vue d’ensemble de la programmation VBA. Ne vous inquiétez pas, ce n’est pas aussi ennuyeux que cela puisse paraître, et je vous encourage vivement à ne pas sauter directement au Chapitre 2.
Mais… euh… VBA, qu’est-ce que c’est exactement ?
Il s’agit du langage de programmation Visual Basic pour Applications développé par Microsoft (la société qui tente de vous vendre une nouvelle version de Windows tous les deux ou trois ans). À l’instar des autres logiciels de Microsoft Office, Excel comprend le langage VBA (et cela ne vous coûte pas plus cher). Bref, le VBA est le langage de programmation qui permet à des gens comme vous et moi de développer des programmes capables de contrôler Excel.
Imaginez une sorte de robot intelligent qui sache tout sur Excel. Ce robot est capable de lire des instructions et de piloter Excel extrêmement vite et de manière totalement précise. Lorsque vous voulez que ce robot exécute une certaine action, vous commencez par écrire une série d’instructions rédigées dans un code spécial. Vous transmettez ensuite ces instructions au robot, et vous vous asseyez tranquillement en sirotant un verre de limonade pendant qu’il les exécute. Ce code, ou plutôt ce langage, particulier, c’est VBA. Par contre, je me dois de vous dire qu’il n’y a pas un vrai robot dans Excel, et qu’il est inutile de compter sur lui pour vous servir à boire.
[image:]À propos de la terminologie
La terminologie de la programmation Excel n’est pas toujours claire. Par exemple, VBA est un langage de programmation, mais c’est aussi un langage de macros. Le code VBA que vous écrivez et qui est exécuté dans Excel est-il une macro ou un programme ? Les procédures VBA étant souvent appelées « macros » dans l’aide d’Excel, nous nous en tiendrons à cette terminologie. Mais il m’arrivera parfois de parler de programme.
Vous rencontrerez aussi souvent, dans ces pages, les termes automatiser, automatisation et leurs variantes. Comme vous vous en doutez, si vous avez écrit une macro qui colore un fond de cellule, imprime la feuille de calcul puis supprime le fond de couleur, vous avez automatisé ces trois actions.
À propos, macro ne signifie pas « Manipulations Assurément Calamiteuses Répétées Outrageusement ». Le terme provient du grec makros, « grand ». Il se peut que, lorsque vous serez devenu un véritable expert dans l’art de la programmation de macros, il s’applique également à l’état de votre compte bancaire…

Que VBA permet-il de faire ?
Vous n’apprendrez rien de nouveau lorsque je vous dirai qu’Excel sert à d’innombrables tâches dont voici un modeste aperçu :
	Analyser des données scientifiques.

	Gérer un budget et simuler des prévisions.

	Créer et éditer des factures et des formulaires.

	Créer des graphiques à partir d’ensembles de données.

	Gérer des listes de clients, de résultats scolaires ou d’idées de cadeaux, etc.

Nous pourrions allonger la liste à l’infini ou presque. Tout ça pour dire qu’Excel sert à une foultitude de choses. Chaque lecteur de ce livre a ses propres besoins et ses propres attentes. Mais tous ont en commun la nécessité d’automatiser certaines fonctions d’Excel. C’est là que VBA entre en jeu.
Vous pourriez par exemple créer un programme VBA qui importe, met en forme puis imprime le rapport des ventes du mois. Après avoir développé et testé le programme, vous exécuterez la macro grâce à une seule commande qui effectuera à votre place toutes ces longues séries de procédures. Au lieu de vous battre avec de fastidieuses successions de commandes, vous laissez faire Excel pendant que vous vous tournez les pouces (mais vous avez certainement bien mieux à faire) et vous retrouver sur Facebook en un rien de temps.
Dans les sections qui suivent, vous découvrirez quelques usages courants des macros VBA. L’une ou l’autre d’entre elles devrait attiser votre curiosité.

Insérer des kyrielles de texte
Si vous devez systématiquement entrer dans une feuille de calcul le nom de votre société, son adresse ou encore ses coordonnées téléphoniques, vous pouvez créer une macro pour le faire à votre place. Mais il est possible d’étendre ce concept beaucoup plus loin. Par exemple, vous pourriez développer une macro qui saisisse automatiquement les noms de tous les représentants travaillant pour la société.

Automatiser les tâches répétitives
Supposons que, responsable des ventes, vous deviez rédiger chaque mois le rapport qui calmera les angoisses de votre patron. Si cette tâche est toujours la même, vous la confierez à un programme VBA. Votre patron sera impressionné par la qualité et la cohérence de vos rapports. Un jour ou l’autre, il finira bien par vous proposer un poste plus gratifiant (on peut toujours rêver…).

Exécuter des actions à répétition
Si vous devez appliquer une même action dans, disons, une bonne douzaine de classeurs Excel différents, vous avez intérêt à enregistrer une macro lorsque vous effectuez cette action la première fois, puis à laisser cette macro la répéter pour les onze autres classeurs. Excel ne se plaindra jamais de ces ennuyeuses répétitions de tâches. L’enregistrement d’une macro, c’est un peu comme capturer une vidéo, la caméra en moins. Et la batterie n’a jamais besoin d’être rechargée.

Créer une commande personnalisée
Vous avez souvent recours aux mêmes successions de commandes dans les menus d’Excel ou dans son ruban ? Vous gagnerez du temps en développant une macro qui les réunit toutes en une seule commande personnalisée, que vous lancerez d’une seule touche ou d’un seul clic sur un bouton. D’accord, le gain sera sans doute assez minime. Mais vous éviterez ainsi des erreurs possibles, et le type du bureau d’à côté sera vraiment admiratif.

Créer des boutons personnalisés
Vous pouvez personnaliser la barre d’accès rapide en y ajoutant vos propres boutons qui exécuteront d’un clic les macros que vous écrivez. Les gens qui travaillent dans les bureaux sont souvent impressionnés par les boutons qui font des choses magiques. Et si vous voulez réellement qu’ils vous portent aux nues, ajoutez aussi des boutons au ruban. Ils n’en reviendront pas.

Développer de nouvelles fonctions de calcul
Bien qu’Excel soit pourvu de centaines de fonctions prédéfinies (comme SOMME et MOYENNE), vous pourrez créer vos propres fonctions personnalisées qui simplifieront considérablement vos formules. Vous serez étonné de constater combien c’est facile (nous y reviendrons au Chapitre 20). Mieux encore, vos fonctions personnalisées apparaîtront dans la boîte de dialogue Coller une fonction, comme si elles avaient toujours fait partie d’Excel. Là, c’est le SAMU qu’il faut appeler pour ranimer vos collègues tombés en pâmoison.

Créer des compléments pour Excel
Vous connaissez probablement certaines des macros complémentaires (ou plus simplement compléments) livrées avec Excel, comme l’Utilitaire d’analyse. Le langage VBA vous permettra de construire les vôtres. Par exemple, j’ai développé mon propre complément, intitulé Power Utility Pak, uniquement en VBA. Et plein de gens me paient pour pouvoir l’utiliser. Eh oui…

Points forts et limites de VBA
Après avoir lu ce qui précède, VBA résonne à vos oreilles comme le Saint Graal, mais il faut savoir qu’il a aussi son côté obscur.

Les points forts du langage VBA
Quasiment tout ce qu’il est possible de faire dans Excel peut être automatisé. Il suffit pour cela d’écrire les instructions qu’Excel devra exécuter. L’automatisation des tâches présente de nombreux avantages :
	Excel exécute toujours les tâches de la même manière (dans la plupart des cas, cette régularité est une bonne chose).

	Excel exécute les tâches plus rapidement que vous ne le feriez manuellement (à moins d’avoir des doigts extraordinairement agiles et une souris plus rapide que Speedy Gonzales).

	Si vous savez bien programmer les macros, Excel exécute toujours les tâches sans erreur (en ce qui me concerne, je ne saurais en dire autant…).

	Si tout a été conçu correctement, les tâches peuvent être démarrées par quelqu’un qui ne connaît rien à Excel.

	Il est possible de demander à Excel d’exécuter des tâches autrement impossibles à mettre en œuvre. Génial pour devenir le type le plus populaire du bureau.

	Lorsque la tâche est longue et demande du temps, vous n’avez plus à vous morfondre devant l’ordinateur. Allez plutôt faire un brin de causette près de la machine à café. On y apprend toujours des choses intéressantes.

Les limites du langage VBA
Toute médaille ayant son revers, il est honnête que nous nous attardions sur les désavantages réels ou potentiels du VBA :
	Vous devez apprendre la programmation VBA (mais c’est bien dans ce but que vous avez acheté ce livre, n’est-ce pas ?). Fort heureusement, ce n’est pas aussi difficile que vous pourriez le craindre.

	Les personnes qui désireraient utiliser vos programmes VBA doivent posséder Excel. Il serait fabuleux de pouvoir transformer d’un simple clic une application VBA/Excel en un logiciel indépendant, mais ce n’est pas possible (et cela ne le sera probablement jamais).

	Parfois, les choses tournent mal. Autrement dit, vous n’aurez jamais la certitude que votre programme VBA fonctionnera dans tous les cas de figure. Bienvenue dans le monde enchanté du débogage (et du support technique si d’autres personnes se servent de vos macros).

	Le VBA n’est pas figé. Comme vous le savez, Microsoft améliore sans cesse Excel. Même si Microsoft fait de grands efforts pour que les versions successives restent compatibles, vous découvrirez peut-être un jour que le code longuement concocté pour l’actuelle version d’Excel est inutilisable avec une version future.

Le langage VBA en quelques mots
Les points qui suivent expliquent à grands traits ce qu’est VBA. Nous reviendrons bien sûr en détail sur toute cette matière.
	Vous exécutez des actions VBA en écrivant ou en enregistrant du code dans un module VBA. Vous visionnez et éditez les modules VBA avec Visual Basic Editor (VBE).

	Un module VBA est fait de procédures Sub (sous). Une procédure Sub n’a rien à voir avec une base de sous-marins. Je parle ici de code informatique exécutant une certaine action avec ou sur des objets (nous reviendrons d’ici peu sur cette notion d’objet). L’exemple qui suit montre une procédure Sub toute simple, nommée Test. Ce faramineux programme donne le résultat de 1 + 1.
	Sub Test()

	Somme = 1 + 1

	MsgBox "La réponse est " & Somme

	End Sub

	Un module VBA peut aussi comporter des procédures Function (fonction). Une procédure Function retourne une valeur unique. Vous pouvez l’appeler depuis une autre procédure VBA, voire l’utiliser comme fonction dans une formule au sein d’une feuille de calcul. L’exemple qui suit montre une fonction appelée fort judicieusement Addition. Elle accepte deux nombres appelés arguments et retourne leur somme :
	Function Addition(arg1, arg2)

	Addition = arg1 + arg2

	End Function

	Le langage VBA manipule des objets. Excel fournit des dizaines et des dizaines d’objets que vous pouvez manipuler. Ces objets peuvent être un classeur, une feuille de calcul, une plage de cellules, un graphique, une forme… Il en existe beaucoup d’autres, et tous peuvent être manipulés par du code VBA.

	Les objets sont organisés hiérarchiquement. Les objets peuvent être des conteneurs pour d’autres objets. Excel se trouve tout en haut de la hiérarchie des objets. Excel lui-même est un objet nommé Application. Il contient d’autres objets nommés, par exemple Workbook (classeur). À son tour, un objet Workbook peut contenir d’autres objets, comme Worksheet (feuille de calcul) ou Chart (graphique). Un objet Worksheet contiendra des objets de niveau inférieur, comme Range (plage) ou PivotTable (tableau croisé dynamique). Le terme Modèle objet se rapporte à l’arrangement de ces objets (reportez-vous au Chapitre 4 pour les détails).

	Des objets d’un même type forment une collection. Par exemple, la collection Worksheets est l’ensemble de toutes les feuilles de calcul d’un classeur particulier. La collection Charts est l’ensemble de tous les graphiques d’un classeur. Les collections sont elles-mêmes des objets.

	Vous faites référence à un certain objet en spécifiant sa position dans la hiérarchie des objets grâce à un point de séparation. Par exemple, vous ferez référence au classeur appelé Classeur1.xlsx sous la forme :
	Application.Workbooks("Classeur1.xlsx")

Il s’agit là de l’objet Classeur1.xlsx de la collection Workbooks. Cette dernière est contenue dans l’objet Application, c’est-à-dire Excel. À un autre niveau, vous ferez référence à la feuille Feuil1, qui se trouve dans le classeur Classeur1.xlsx, sous la forme :
	Application.Workbooks("Classeur1.xlsx").Worksheets("Feuil1")

Comme le montre l’exemple suivant, vous pouvez étendre l’instruction à un niveau supplémentaire et spécifier une cellule spécifique, A1 en l’occurrence :
	Application.Workbooks("Classeur1.xlsx").Worksheets("Feuil1").Range("A1")

	Si vous omettez une référence particulière, Excel utilise les objets actifs. Si Classeur1.xlsx est le classeur actif, la référence précédente peut être simplifiée sous la forme suivante :
	Worksheets("Feuil1").Range("A1")

Si vous savez que Feuil1 est la feuille de calcul active, la référence peut être encore plus simple :
	Range("A1")

	Les objets ont des propriétés. Les propriétés sont en quelque sorte les paramètres d’un objet. Par exemple, un objet Range a des propriétés comme Value (valeur) et Address (adresse). Un objet Chart a des propriétés comme HasTitle (possède un titre) et Type. Vous pouvez recourir à VBA pour déterminer les propriétés d’un objet ou les modifier.

	Vous faites référence aux propriétés d’un objet en combinant le nom de cet objet avec celui de la propriété voulue, les deux étant séparés par un point. Par exemple, il sera fait référence à la valeur contenue dans la cellule A1 de la feuille Feuil1 sous cette forme :
	Worksheets(" Feuil1 ").Range(" A1 ").Value

	Des valeurs peuvent être affectées à des variables. Une variable est un élément nommé qui contient des informations. Les variables VBA sont capables de stocker des valeurs, du texte ou encore les paramètres d’une propriété. Pour affecter la valeur de la cellule A1 de Feuil1 à la variable Intérêt, vous utiliserez l’instruction VBA suivante :
	Intérêt = Worksheets(" Feuil1 ").Range(" A1 ").Value

	Les objets ont des méthodes. Une méthode est une action qu’Excel exécute avec un objet. Par exemple, l’une des méthodes de l’objet Range est ClearContents (effacer le contenu). Elle efface le contenu de toutes les cellules d’une plage donnée.

	Une méthode est spécifiée en combinant l’objet et la méthode, séparés par un point. Par exemple, l’instruction suivante vide la cellule A1 de son contenu :
	Worksheets(« Feuil1 »).Range(« A1 »).ClearContents

	Le VBA comprend toutes les constructions des langages de programmation modernes, y compris les variables, les tableaux et les boucles. Si vous prenez le temps de maîtriser les fondamentaux de ce lange, vous deviendrez capable d’écrire du code qui réalisera des choses incroyables.

Incroyable mais vrai, la liste qui précède fait le tour du langage VBA. Le reste sont des broutilles, des détails qui seront étudiés dans les autres chapitres. C’est d’ailleurs pour cela que ce livre ne s’arrête pas à cette page.

Compatibilité Excel
[image:]Ce livre a été écrit pour les versions les plus récentes d’Excel et notamment celle que Microsoft a mise à disposition en 2024. Si vous utilisez une version plus ancienne de ce programme, certains passages du livre pourraient poser des problèmes.
Si vous envisagez de distribuer vos fichiers VBA/Excel à d’autres utilisateurs, il est crucial de savoir quelle version d’Excel ils utilisent. Ceux qui travaillent encore sur d’anciennes versions ne bénéficieront pas des particularités introduites dans les versions récentes. Par exemple, si vous écrivez du code VBA qui fait référence à la cellule XFD1048576 (la toute dernière dans un classeur), les utilisateurs d’une version d’Excel antérieure à 2007 obtiendront un message d’erreur, car leurs feuilles de calcul n’ont que 65 536 lignes et 255 colonnes (soit comme dernière référence IV65536).
À partir d’Excel 2010, de nouveaux objets, méthodes et propriétés ont été implémentés. Si vous les introduisez dans vos codes, les utilisateurs de versions plus anciennes verront apparaître un message d’erreur. Et c’est à vous qu’ils s’en prendront.

Et l’IA dans tout ça ?
IA ! Oui ! L’intelligence artificielle. Microsoft l’a largement implémentée dans Office 2024 en général et dans Excel en particulier.
L’intégration de l’intelligence artificielle (IA) dans VBA pour Excel en 2024 marque une évolution significative dans l’automatisation et l’analyse des données. Voici un résumé de ce que l’on sait :
	Automatisation avancée : l’IA permet d’automatiser des tâches complexes qui étaient auparavant difficiles, voire impossibles, avec le VBA traditionnel. Cela inclut l’analyse prédictive, la reconnaissance de formes, et le traitement du langage naturel.

	Gain de temps et d’efficacité : en automatisant les tâches répétitives et en fournissant des analyses plus rapides, l’IA dans VBA libère les utilisateurs pour qu’ils se concentrent sur des tâches à plus forte valeur ajoutée.

	Fonctionnalités « intelligentes » : l’IA ajoute des fonctionnalités intelligentes directement dans les feuilles de calcul, comme la suggestion de formules, la correction automatique, et l’analyse des tendances.

	Génération automatique de code VBA : certains outils d’IA peuvent générer du code VBA à partir de descriptions en langage naturel, ce qui facilite grandement la création de macros, même pour les utilisateurs non experts en programmation.

[image:]Pour profiter pleinement de l’IA dans Excel, vous devez souscrire un abonnement à Copilot Pro qui vous coûtera 22 euros par mois.
[image:]Si vous ne souhaitez pas souscrire un tel abonnement, vous pourrez utiliser Copilot depuis votre compte Microsoft pour vous aider à structurer vos codes VBA.

 Chapitre 2

 Droit au but

 DANS CE CHAPITRE

 Développer une macro VBA utile : un exemple pratique ; étape par étape.

 •

 Enregistrer des actions avec l’enregistreur de macros d’Excel.

 •

 Examiner et tester le code enregistré.

 •

 Modifier une macro enregistrée.

 •

 Macros enregistrées : questions de sécurité.

 Je ne suis pas un expert en natation, mais il paraît que la meilleure façon d’entrer dans l’eau froide est d’y plonger sans réfléchir. C’est exactement ce que nous allons faire dans ce chapitre en plongeant sans précaution dans VBA.

 À la fin de ce chapitre, la programmation vous semblera moins intimidante et vous ne regretterez pas de vous y être aventuré. Vous assisterez à une démonstration pas à pas du développement d’une macro simple, mais particulièrement utile.

 Avant de commencer…

 Avant de vous autoproclamer Développeur Excel, vous devez passer par des rites d’initiation. En l’occurrence, il va vous falloir apporter quelques petites modifications à Excel pour qu’il affiche un nouvel onglet en haut de l’écran. Faire apparaître cet onglet est facile et n’a besoin d’être fait qu’une seule fois. Suivez simplement ces étapes :

 	
 1 Cliquez du bouton droit de la souris sur un onglet du ruban.

 	
 2 Dans le menu contextuel qui apparaît, exécutez la commande Personnaliser le ruban.

 La boîte de dialogue Options Excel va apparaître, la rubrique Personnaliser le ruban étant active.

 	
 3 Parcourez le contenu de la seconde colonne, à droite, et cochez la case Développeur.

 	
 4 Cliquez sur OK pour confirmer.

 Un nouvel onglet, judicieusement appelé Développeur, apparaît au-dessus du ruban. Lorsque vous cliquez dessus, le ruban affiche des commandes utiles pour les programmeurs, c’est-à-dire pour vous, comme le montre la Figure 2.1 dans Excel 2024.

 Figure 2.1

 L’onglet Développeur est caché par défaut, mais il est facile à révéler.

 [image:]

 Ce que vous allez faire ici

 Dans cette section, vous apprendrez à créer votre première macro. Elle vous servira à :

 	
 Taper votre nom dans une cellule.

 	
 Saisir la date et l’heure dans la cellule en dessous de la précédente.

 	
 Mettre en forme les deux cellules pour afficher leur contenu en gras.

 	
 Changer la taille des caractères dans les deux cellules afin qu’elle soit de 16 points.

 Bien entendu, cette macro n’a aucune chance de remporter la grande compétition annuelle de programmation en VBA. Mais tout le monde doit bien commencer par quelque chose. Cette macro exécutera notre séquence d’actions d’un seul coup. Comme je l’explique dans les sections qui suivent, vous commencerez par enregistrer toutes les étapes une par une. Vous testerez ensuite la macro pour voir si elle fonctionne correctement. Enfin, vous l’éditerez pour lui ajouter quelques touches finales. Prêt ? Alors, allons-y.

 Les premiers pas de votre macro

 Cette section décrit les préparatifs qui précèdent l’enregistrement de la macro. En d’autres termes, voici ce que vous devez faire avant de passer aux actes :

 	
 1 Démarrez Excel si ce n’est déjà fait.

 	
 2 Si nécessaire, créez un nouveau classeur vide.

 Le raccourci Ctrl+N le fait en un clin d’œil.

 	
 3 Cliquez sur l’onglet Développeur et jetez un coup d’œil sur le bouton Utiliser les références relatives, dans le groupe Code.

 Si la couleur de ce bouton est différente de celle des autres, vous êtes bien parti. Sinon, cliquez simplement dessus pour l’activer.

 Les références relatives sont expliquées dans le Chapitre 6. Pour le moment, veillez à ce que le bouton Utiliser les références relatives soit activé (autrement dit, coloré).

 Enregistrer la macro

 Nous arrivons à la partie pratique. Exécutez scrupuleusement ces instructions :

 	
 1 Sélectionnez la cellule de votre choix.

 	
 2 Ouvrez l’onglet Développeur, puis cliquez sur le bouton Enregistrer une macro du groupe Code.

 La boîte de dialogue Enregistrer une macro apparaît (voir la Figure 2.2).

 Figure 2.2

 Cette boîte de dialogue sert à enregistrer une macro.

 [image:]

 	
 3 Attribuez un nom à la macro.

 Excel propose un nom par défaut, Macro1, mais il est préférable d’en choisir un autre, plus évocateur, comme NomDate ou Nom_Date (les espaces n’étant pas acceptés, ils peuvent être remplacés par le caractère de soulignement).

 	
 4 Pour la touche de raccourci, entrez Maj+N. Pour cela, cliquez dans la case vide Touche de raccourci. Ensuite, appuyez sur les touches Ctrl+Maj+N de votre clavier.

 	
 [image:]Définir une combinaison de touches pour un raccourci est facultatif.

 	
 5 Assurez-vous que le champ Enregistrer la macro dans, indique bien Ce classeur.

 	
 6 Si vous le souhaitez, saisissez un commentaire dans le champ Description.

 Certaines personnes aiment bien préciser ce que fait la macro (ou ce qu’elle est censée faire).

 	
 7 Cliquez sur OK.

 La boîte de dialogue se ferme tandis qu’Excel active l’enregistreur de macros. Dès lors, Excel transcrit toutes vos actions, sans exception, en code VBA. Remarquez que le bouton Enregistrer une macro, dans le groupe Code de l’onglet Développeur, est maintenant remplacé par Arrêter l’enregistrement.

 	
 8 Tapez votre nom dans la cellule active.

 	
 9 Déplacez le pointeur sur la cellule qui se trouve juste en dessous (il vous suffit en fait d’appuyer sur la touche Entrée). Saisissez alors la formule suivante :

 =MAINTENANT()

 Cette formule affiche la date et l’heure courantes.

 	
 10 Validez avec Entrée. Activez la cellule contenant la formule puis exécutez le raccourci Ctrl+C pour la copier dans le Presse-papiers.

 	
 11 Activez l’onglet Accueil. Dans le groupe Presse-papiers, cliquez sur la petite pointe qui se trouve sous le bouton Coller, puis sur Valeurs (V) dans la section Coller des valeurs.

 Cette commande convertit la formule en une simple valeur contenant la date et l’heure courantes.

 	
 12 La cellule qui contient la date et l’heure étant toujours active, appuyez sur la combinaison Maj+flèche haut.

 Vous sélectionnez de cette manière la cellule courante et celle qui se trouve juste au-dessus (c’est-à-dire votre nom).

 	
 13 Utilisez les contrôles du groupe Police de l’onglet Accueil pour mettre le contenu des cellules en gras et à une taille de 16 points.

 	
 14 Revenez à l’onglet Développeur, puis dans le groupe Code, cliquez sur le bouton Arrêter l’enregistrement.

 L’enregistreur de macros est désactivé.

 Bravo ! Vous venez de créer votre première macro Excel en VBA.

 Tester la macro

 Vous allez maintenant vérifier le bon fonctionnement de la macro. Pour cela, sélectionnez une cellule vide et appuyer sur Ctrl+Maj+N. Excel exécute la macro en un éclair. Votre nom ainsi que la date et l’heure courantes apparaissent en gros caractères gras.

 [image:]Une autre manière de procéder consiste à cliquer dans le groupe Code de l’onglet Développeur sur le bouton Macros afin d’afficher la boîte de dialogue Macro (vous pouvez aussi utiliser le raccourci Alt+F8). Sélectionnez votre macro dans la liste, en l’occurrence NomDate, ou bien le nom que vous avez défini, puis cliquez sur Exécuter. Assurez-vous au préalable que vous avez bien choisi la cellule dans laquelle vous voulez que votre nom apparaisse.

 Examiner la macro

 Jusqu’à présent, vous avez enregistré une macro et vous l’avez testée. Pour peu que vous ayez l’esprit curieux, vous vous demandez sans doute à quoi elle ressemble.

 Vous vous souvenez que vous avez demandé à Excel de stocker la macro que vous avez enregistrée dans le classeur. Mais vous ne pouvez pas visionner son contenu directement dans Excel. Pour l’afficher et la modifier, vous devez activer l’éditeur Visual Basic Editor (VBE pour les intimes).

 Procédez comme suit pour voir le contenu de la macro :

 	
 1 Sous l’onglet Développeur, cliquez dans le groupe Code sur le bouton Visual Basic (ou appuyez sur Alt+F11).

 La fenêtre Microsoft Visual Basic apparaît, comme l’illustre la Figure 2.3. Comme elle est très personnalisable, elle peut être sensiblement différente sur votre propre ordinateur. L’éditeur Visual Basic contient plusieurs fenêtres qui vous intriguent certainement. D’ici peu, elles n’auront (presque) plus de secrets pour vous.

 Figure 2.3

 C’est dans la fenêtre de l’éditeur Visual Basic que vous affichez et modifiez le code VBA.

 [image:]

 	
 2 Localisez la fenêtre nommée Projet.

 La fenêtre Projet – appelée aussi Explorateur de projets – contient la liste de tous les classeurs et compléments actuellement ouverts. Chaque projet est organisé en une arborescence qui peut être déployée pour afficher davantage d’informations, ou contractée pour plus de compacité.

 	
 [image:]L’éditeur VBE est constitué de plusieurs fenêtres qui peuvent être ouvertes ou fermées. Si une fenêtre n’est pas visible dans VBE, déroulez le menu Affichage et choisissez celle que vous désirez ouvrir. Par exemple, si la fenêtre Projet n’est pas ouverte, vous pouvez cliquer sur Explorateur de projets (notez aussi le raccourci Ctrl+R). Les autres fenêtres s’ouvrent d’une manière similaire. Je vous en dirais plus sur les composants de l’éditeur Visual Basic dans le Chapitre 3.

 	
 3 Sélectionnez le projet correspondant au classeur dans lequel vous avez enregistré la macro.

 Si vous n’avez pas encore enregistré votre classeur, le projet s’appelle sans doute VBAProject (Classeur1).

 	
 4 Cliquez sur le signe plus (+), à gauche du dossier nommé Modules.

 L’arborescence se déploie pour montrer le nom Module1, qui est à ce stade le seul du projet.

 	
 5 Double-cliquez sur Module1.

 Le code VBA de ce module s’affiche dans la fenêtre Code (reportez-vous à la Figure 2.3). La présentation peut être légèrement différente sur votre ordinateur. Bien entendu, ce code dépend aussi des actions particulières que vous avez pu exécuter lors de l’enregistrement de la macro.

 À ce stade, le contenu de la macro vous semble probablement aussi obscur qu’un grimoire médiéval. Ne vous inquiétez pas : dans quelques chapitres, tout vous sera aussi clair que de l’eau de roche.

 La macro NomDate comporte toute une série d’instructions. Excel les exécute les unes après les autres, en allant de haut en bas. Une instruction précédée d’une apostrophe (‘) est un commentaire. Un commentaire sert uniquement à documenter le programme. Il n’intervient pas dans la programmation et est ignoré par VBA.

 La véritable première instruction VBA, qui commence par le mot Sub, identifie la macro en tant que procédure Sub et lui donne un nom. Le nom est celui que vous aviez tapé dans la boîte de dialogue Enregistrer une macro. L’instruction suivante demande à Excel de copier les cellules sélectionnées. Si vous suivez une à une les lignes de code, certaines vous donneront des renseignements compréhensibles. Vous pouvez par exemple y retrouver votre nom, la formule que vous avez entrée – en fait, la fonction francisée MAINTENANT() est enregistrée par Excel sous sa forme d’origine, soit NOW() – ainsi que du tas de code supplémentaire qui sert à changer le style des caractères. Une procédure Sub s’achève toujours par une instruction End Sub.

 Je n’ai jamais enregistré tout ça !

 Il a été dit précédemment que l’enregistrement d’une macro était comparable à un enregistrement avec un magnétophone. Quand vous écoutez votre propre voix, vous êtes toujours surpris et vous vous dites : « ce n’est pas ma voix, ça ». C’est pareil avec une macro : vous y trouvez toujours des éléments que vous pensez ne pas avoir enregistrés.

 Par exemple, lorsque vous avez enregistré la macro NomDate, vous avez demandé à modifier la taille de la police, mais vous n’avez rien dit quant aux autres paramètres concernant celle-ci, comme le soulignement – Underline –, la mise en exposant – Superscript – et ainsi de suite. Cela arrive fréquemment car, lorsque vous enregistrez une action figurant dans une boîte de dialogue, Excel conserve une trace de toutes les options qui s’y trouvent, en plus de celles que vous validez. Dans un prochain chapitre, vous apprendrez à éliminer toutes ces scories d’une macro.

 Modifier la macro

 Comme vous vous en doutez certainement déjà, la fenêtre du code dans l’éditeur VBA vous permet non seulement de visualiser votre code, mais aussi de le modifier. Même si votre connaissance actuelle da sa syntaxe ne vous renseigne probablement pas sur ce qu’il est possible de faire à ce stade, voici ce que vous pouvez faire :

 	
 Changer le nom que vous avez entré dans la cellule active, par exemple pour le remplacer par celui de votre chien ou celui de votre belle-mère.

 	
 Modifier le nom ou la taille de la police de caractères.

 	
 Déterminer quelle instruction il faudrait ajouter au code pour mettre le texte en italique, sachant que True, est Vrai, et False, Faux :

 	
 Selection.Font.Italic = True

 [image:]L’écriture d’un module VBA ressemble beaucoup à du traitement de texte, la frappe au kilomètre et le formatage en moins. C’est pourquoi vous devrez appuyer sur la touche Entrée à la fin de chaque ligne. En fait, la saisie dans l’éditeur Visual Basic ressemble à celle dans l’application Bloc-notes de Windows. Les combinaisons de touches, classiques sous Windows, fonctionnent comme d’habitude.

 Les modifications terminées, il suffit de revenir à Excel pour tester la macro révisée afin de voir ce qu’elle donne. De la même manière que vous avez ouvert l’éditeur Visual Basic en appuyant sur Alt+F11, cette même combinaison vous ramène directement à Excel.

 Sauvegarder un classeur qui contient des macros

 Après avoir enregistré une ou plusieurs macros dans un classeur, celui-ci doit être enregistré avec le type Classeur Excel prenant en charge les macros. En d’autres termes, le fichier doit être sauvegardé avec l’extension XLSM au lieu de l’extension normale XLSX.

 Par exemple, pour sauvegarder le classeur contenant la macro NomDate, la boîte de dialogue Enregistrer sous vous propose par défaut le format XLSX. Or celui-ci ne peut pas contenir de macros. Si vous persistez, vous verrez s’afficher le message d’avertissement illustré sur la Figure 2.4. Dans ce cas, cliquez sur le bouton Non, puis sélectionnez dans la liste Type l’option Classeur Excel (prenant en charge les macros) (*.xlsm).

 Figure 2.4

 Excel vous avertit qu’un classeur qui contient des macros ne peut pas être enregistré au format XLSX.

 [image:]

 Comprendre la sécurité des macros

 La sécurité des macros est une fonction essentielle dans Excel. La raison en est évidente : VBA est un langage puissant, et même si puissant qu’il est possible de créer une macro capable d’endommager sérieusement le contenu d’un ordinateur, par exemple en supprimant des fichiers, en envoyant des informations à d’autres ordinateurs, et même en effaçant des parties de Windows, rendant ainsi impossible le démarrage de votre système.

 Les fonctions de sécurité des macros sont apparues dans la version 2007 d’Excel. Leur rôle est de prévenir tant que faire se peut ces types de problèmes.

 La Figure 2.5 montre la section Paramètres des macros de la boîte de dialogue Centre de gestion de la confidentialité. Pour l’afficher, ouvrez l’onglet Développeur, puis cliquez dans le groupe Code sur le bouton Sécurité des macros.

 Figure 2.5

 La section Paramètres des macros de la boîte de dialogue Centre de gestion de la confidentialité.

 [image:]

 Par défaut, Excel utilise le mode Désactiver toutes les macros avec notification. Quand vous ouvrez un classeur qui contient des macros, et si le fichier n’est pas « signé » numériquement ou enregistré dans un emplacement approuvé, Excel affiche un message d’avertissement semblable à celui de la Figure 2.6. Si vous êtes certain que le classeur provient d’une source sûre, cliquez sur le bouton Activer les macros. Dans le cas contraire, cliquez sur Désactiver les macros.

 Figure 2.6

 Excel vous prévient que le classeur que vous essayez d’ouvrir contient des macros (cas si l’éditeur Visual Basic est ouvert).

 [image:]

 [image:]Le message de la Figure 2.6 n’est visible que si l’éditeur Visual Basic est ouvert. Sinon, Excel affiche un avertissement de sécurité au-dessus de la barre de formule (Figure 2.7). Si vous savez que le classeur est sûr, cliquez sur le bouton Activer le contenu. Pour utiliser le classeur sans activer les macros, cliquez sur la croix de fermeture, à droite du bandeau de l’avertissement de sécurité.

 Figure 2.7

 Excel vous prévient que le classeur que vous essayez d’ouvrir contient des macros (cas si l’éditeur Visual Basic est fermé).

 [image:]

 Quand vous spécifiez qu’un classeur est sûr, Excel s’en souvient. La prochaine fois que vous l’ouvrirez, vous ne verrez plus le message d’avertissement de sécurité (mais ce n’est pas le cas avec l’antique Excel 2007).

 La meilleure manière de gérer cette affaire de sécurité des macros consiste peut-être à définir un ou plusieurs dossiers en tant qu’emplacements sûrs. Tous les classeurs enregistrés dedans sont ouverts sans déclencher ce genre de message. Vous spécifiez ces dossiers dans la section Emplacements approuvés du Centre de gestion de la confidentialité.

 Pour en savoir plus sur les réglages de sécurité des macros d’Excel, appuyez sur la touche F1 lorsque la section Paramètres des macros de la boîte de dialogue Centre de gestion de la confidentialité est ouverte. L’aide correspondante d’Excel va s’afficher. Lisez ce qu’elle vous indique.

 Plus sur la macro NomDate

 Lorsque vous aurez terminé ce livre, vous comprendrez pleinement le fonctionnement de la macro NomDate, et vous saurez en plus développer des macros autrement plus sophistiquées. Pour l’instant, voici quelques remarques complémentaires sur l’exemple proposé dans ce chapitre :

 	
 Pour que cette macro fonctionne, son classeur doit être ouvert. S’il est fermé, elle ne fonctionnera pas (et le raccourci clavier Ctrl+Maj+N ne donnera rien).

 	
 Tant que le classeur contenant la macro est ouvert, cette macro peut être exécutée dans n’importe quel autre classeur ouvert. Autrement dit, il n’est pas nécessaire que le classeur qui héberge la macro soit actif.

 	
 Aucune macro n’est parfaite, et celle-ci encore moins que les autres. En particulier, elle écrasera un texte existant sans vous prévenir et ses effets ne pourront pas être annulés.

 	
 Avant de démarrer l’enregistrement de votre macro, vous lui avez affecté une touche de raccourci. Ce n’est là qu’un des nombreux moyens d’exécuter une macro (vous découvrirez d’autres techniques dans le Chapitre 5).

 	
 Vous pourriez programmer la macro manuellement au lieu de l’enregistrer. Mais pour cela, vous devez maîtriser le langage VBA (patience, ça viendra…).

 	
 Vous pourriez stocker cette macro dans votre Classeur de macros personnelles. Elle serait ainsi disponible chaque fois que vous démarrez Excel. Reportez-vous au Chapitre 6 pour en savoir plus sur le Classeur de macros personnelles.

 	
 Un classeur peut aussi être converti en fichier de macro complémentaire (nous y reviendrons au Chapitre 21).

 Félicitations. Vous venez d’être initié au monde mystérieux de la programmation Excel. J’espère que ce chapitre vous aura persuadé qu’elle est à votre portée. Les chapitres qui suivent répondront aux questions que vous vous posez certainement.

Deuxième partie
Comment VBA travaille avec Excel
DANS CETTE PARTIE…

Accéder aux composants importants de l’éditeur Visual Basic.
•
Découvrir les modules de code VBA (les feuilles qui enregistrent votre code VBA).
•
Généralités sur les modèles objets d’Excel.
•
Comprendre deux notions essentielles : les propriétés des objets et les méthodes.
•
Les différences entre sous-programmes et fonctions.
•
Prendre en main l’enregistreur de macros d’Excel.

Chapitre 3
Visual
Basic Editor
DANS CE CHAPITRE
Comprendre Visual Basic Editor (VBE).
•
Découvrir les éléments de Visual Basic Editor.
•
Savoir ce que contient un module VBA.
•
Les trois moyens d’introduire du code VBA dans un module.
•
Personnaliser l’environnement VBA.

En tant qu’utilisateur chevronné d’Excel, vous en savez long sur les classeurs, les formules, les graphiques et autres joyeusetés de ce tableur. Le moment est à présent venu d’élargir vos horizons et de découvrir un aspect tout nouveau d’Excel : Visual Basic Editor, que nous appellerons souvent par commodité « éditeur VBE » (et tant pis pour le pléonasme) ou tout simplement VBE. Dans ce chapitre, vous apprendrez à l’utiliser et aussi à écrire du code VBA pur et dur.
Découvrir Visual Basic Editor
Visual Basic Editor (VBE) est une application distincte dans laquelle vous écrivez et modifiez les macros en langage Visual Basic (VBA). Il fonctionne dans Excel, ou plus exactement, c’est à partir d’Excel que vous y accédez. Les deux sont donc étroitement liés.
Depuis Excel 2013, tous les classeurs sont affichés dans des fenêtres distinctes. En revanche, il n’y a qu’une seule fenêtre VBE, associée à tous les classeurs Excel que vous ouvrez.
[image:]VBE ne peut pas être démarré séparément d’Excel. Vous ne pouvez y accéder qu’à partir d’Excel (même si aucun classeur n’est ouvert).

Activer VBE
Le moyen le plus rapide d’activer l’éditeur VBE consiste à appuyer sur Alt+F11, à partir d’Excel. Appuyez de nouveau sur Alt+F11 pour revenir dans Excel. Il est aussi possible, très classiquement, d’obtenir le même résultat en cliquant sur la case de fermeture de VBE, à droite de sa barre de titre.
L’éditeur VBE peut également être ouvert à partir du ruban d’Excel : activez l’onglet Développeur, puis cliquez dans le groupe Code sur le bouton Visual Basic. Si vous ne voyez pas cet onglet, reportez-vous au début du Chapitre 2 où j’explique comment le faire apparaître.

Comprendre les composants de VBE
[image:]La Figure 3.1 montre la fenêtre du programme VBE et quelques-uns de ses composants. Comme il se passe beaucoup de choses dans cette fenêtre, agrandissez-la au maximum.
Il est fort probable que la fenêtre de votre éditeur VBE diffère quelque peu de celle de la Figure 3.1, car VBE est hautement personnalisable. Les composants peuvent en effet être masqués, redimensionnés, ancrés, redisposés, etc.
En réalité, l’éditeur VBE possède bien plus de composants que ceux représentés sur la Figure 3.1. Nous y reviendrons au fil de ce livre, au moment opportun.

La barre de menus
La barre de menus de l’éditeur VBE fonctionne exactement comme toutes celles que vous avez pu rencontrer jusqu’ici. Elle contient les commandes qui permettent d’effectuer diverses actions dans les différentes parties du programme. Bon nombre de ces commandes ont des raccourcis clavier.
[image:]L’éditeur VBE ne manque pas de raccourcis clavier. Vous les découvrirez comme d’habitude à droite des commandes. Et, toujours comme d’habitude, un clic du bouton droit révélera un menu contextuel adapté à l’objet concerné.
Figure 3.1
La fenêtre VBE est personnalisable.
[image:]

Les barres d’outils
La barre d’outils Standard, située par défaut juste sous la barre de menus (revoyez la Figure 3.1), est l’une des quatre barres d’outils disponibles dans VBE. Elles fonctionnent toutes sur le même principe que celles que vous trouvez dans bien d’autres programmes, et peuvent par conséquent être personnalisées, déplacées ou masquées. Vous les trouverez dans le menu Affichage > Barres d’outils.

La fenêtre Explorateur de projets
La fenêtre Explorateur de projets affiche l’arborescence de tous les classeurs actuellement ouverts dans Excel, y compris les macros complémentaires et les classeurs masqués. Nous étudierons cette fenêtre plus en détail dans la section « Travailler avec l’Explorateur de projets », plus loin dans ce chapitre.
Si la fenêtre de l’Explorateur de projets n’est pas visible, appuyez sur Ctrl+R ou choisissez Affichage > Explorateur de projets. Pour la refermer, cliquez sur son bouton Fermer, dans la barre de titre, ou cliquez du bouton droit n’importe où dans la fenêtre et, dans le menu contextuel qui apparaît, choisissez la commande Masquer.

La fenêtre Code
La fenêtre Code, parfois appelée « fenêtre Module », contient le code VBA que vous saisissez. Elle est associée à chaque objet d’un projet. Pour voir la fenêtre de code d’un objet, double-cliquez sur celui-ci – sur Feuil1, par exemple – dans la fenêtre Explorateur de projets. Si un objet n’a pas de code VBA, sa fenêtre Code est vide.
Vous en apprendrez davantage dans la section « Travailler dans la fenêtre Code », plus loin dans ce chapitre.

La fenêtre Exécution
La fenêtre Exécution est ou n’est pas visible. Si vous ne la voyez pas, appuyez sur Ctrl+G ou choisissez Affichage > Fenêtre Exécution. Pour la fermer, cliquez sur son bouton Fermer, dans la barre de titre, ou cliquez du bouton droit n’importe où dans la fenêtre et, dans le menu contextuel, choisissez Masquer.
La fenêtre Exécution sert surtout à exécuter directement des instructions VBA, notamment pour déboguer du code. Si vous débutez en VBA, elle ne vous sera pas très utile. Masquez-la pour gagner de la place.
Je reviendrais en détail sur cette fenêtre dans le Chapitre 13. Si cela se trouve, vous ne pourrez plus vous en passer.

Travailler avec l’Explorateur de projets
Dans l’éditeur VBE, chaque classeur et macro complémentaire que vous ouvrez est un projet. Un projet est en quelque sorte une collection d’objets disposés rationnellement, sous la forme d’une arborescence. Un projet peut être déployé en cliquant sur le signe plus (+) à gauche de son nom, dans la fenêtre Explorateur de projets. Cliquer sur le signe moins (-) rétracte le projet. Un double-clic sur un nom donne le même résultat.
[image:]Quand un projet est protégé par un mot de passe, celui-ci vous sera demandé après avoir double-cliqué sur le nom de ce projet. Si vous ne connaissez pas ce mot de passe, vous ne pourrez pas visualiser, et encore moins modifier, le contenu du projet ainsi protégé.
La Figure 3.2 montre trois projets ouverts dans Excel et de facto regroupés dans la fenêtre VBA.
Figure 3.2
Trois projets sont visibles dans la fenêtre de l’Explorateur.
[image:]
Lorsqu’il est déployé, un projet révèle au moins un nœud appelé Microsoft Excel Objects. Ce nœud peut à son tour être déployé pour afficher chacune des feuilles de calcul du classeur – chaque feuille est considérée comme un objet – et également un autre objet appelé ThisWorkbook (ce classeur). Quand un objet a reçu des modules VBA, l’arborescence du projet les montre aussi. Comme vous le découvrirez dans la quatrième partie, un projet peut également contenir un nœud appelé Forms qui contient des objets UserForm (forme utilisateur), également appelés boîtes de dialogue personnalisées.
Cette notion d’objets peut vous sembler quelque peu obscure, mais je vous assure que vous y verrez plus clair dans les chapitres à venir. Ne vous en faites pas si, pour le moment, quelques-unes de ces notions vous échappent encore.

Ajouter un nouveau module VBA
Procédez comme suit pour ajouter un nouveau module VBA à un projet :
	1 Sélectionnez le nom du projet dans la fenêtre Explorateur de projets.

	2 Choisissez Insertion > Module.

ou
	1 Cliquez du bouton droit sur le nom du projet.

	2 Dans le menu contextuel, choisissez Insertion > Module.

[image:]Quand vous enregistrez une macro, Excel insère automatiquement un module VBA contenant le code de l’enregistrement.

OPS/cover/pagetitre.jpg
John Walkenbach

o

¢l6°

Programmation VBA
pour Excel

Pour Excel 2013, 2016, 2019, 2021 & 2024

11111111111

OPS/images/liste_autre-1.jpg

OPS/images/liste_autre.jpg

OPS/images/tech_stuff_icon_1.png

OPS/nav.xhtml

Sommaire

		Couverture

		Titre

		Copyright

		Sommaire

		Introduction

		Première partie - Premiers pas en VBA pour Excel
		Chapitre 1 - VBA ? Quésaco

		Chapitre 2 - Droit au but

		Deuxième partie - Comment VBA travaille avec Excel
		Chapitre 3 - Visual Basic Editor

		Chapitre 4 - Les modèles objets de VBA

		Chapitre 5 - Les procédures VBA Sub et Function

		Chapitre 6 - L'enregistreur de macros d'Excel

		Troisième partie - Les concepts de la programmation
		Chapitre 7 - Les éléments essentiels du langage VBA

		Chapitre 8 - Travailler avec les objets Range

		Chapitre 9 - VBA et les fonctions de feuille de calcul

		Chapitre 10 - Contrôler le déroulement du programme et prendre des décisions

		Chapitre 11 - Procédures et événements automatiques

		Chapitre 12 - Les techniques de gestion des erreurs

		Chapitre 13 - Les techniques d'éradication des bogues

		Chapitre 14 - Des exemples de programmation VBA

		Quatrième partie - Communiquer avec vos utilisateurs
		Chapitre 15 - Les boîtes de dialogue d'Excel

		Chapitre 16 - Boîtes de dialogue personnalisées : les bases

		Chapitre 17 - Les contrôles des boîtes de dialogue

		Chapitre 18 - Techniques et conseils pour les objets UserForm

		Chapitre 19 - Accéder aux macros via l‘interface utilisateur

		Cinquième partie - Le grand rassemblement
		Chapitre 20 - Créer des fonctions de feuille de calcul

		Chapitre 21 - Créer des macros complémentaires

		Sixième partie - Les dix commandements
		Chapitre 22 - Dix astuces bien utiles sur l'éditeur Visual Basic

		Chapitre 23 - Dix ressources (ou presque) pour Excel

		Chapitre 24 - Dix choses à faire ou à ne pas faire en VBA

Pagination de l'édition papier

		1

		2

		1

		2

		3

		4

		5

		6

		7

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		203

		204

		205

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		349

		350

		351

		352

		353

		354

		355

		356

		357

		358

		359

		360

		361

		362

		363

		364

		365

		366

		367

		368

		369

		370

		371

		372

		373

		374

		375

		376

		377

		378

		379

		380

		381

		382

		383

		384

		385

		386

		387

		388

		389

		390

		391

		392

		393

		394

		395

		396

		397

		399

		400

		401

		402

		403

		404

Guide

		Couverture

		Programmation VBA pour Excel 2024 pour les Nuls

		Sommaire

OPS/images/remember_icon.jpg

OPS/images/tip_icon.jpg

OPS/images/tech_stuff_icon.jpg

OPS/images/warning_icon.jpg

OPS/images/02-07.jpg
~ Classeurl_chapitre2.xlsm - Excel

Fichier ~ Accueil Insertion Mise en page Formules Données Révision Affichage

] T{ Enregistrer une macro

Visual Macros (B Utiiser les éférences relatives | | ¢ iements Compléments Compléments

Basic A Sécurité des macros Excel coMm

Code Compléments

o AVERTISSEMENT DE SECURITE Les macros ont été désactivées. | Activer le contenu ‘

ESCARTIN
B
ESCARTIN ESCARTIN
10/01/2025 08:45 10/01/2025 08:48|

OPS/images/02-01.jpg
S Classeur] - Bxcel

Fichier Accueil Insertion Mise enpage Formules Données Révision Affichage Développeur Aide Acrobat PDFelement

[Bemesserunemsco = E G [\ Broves i Baimporter
i Tl

B Uberles ttrnces clotves | o const ot | e (5] Vualer b code . Bikbvoson B

Hanc A Sécurité des macros Excel com & [E! Exécuter la boite de dialogue [

Visual Macros

Code Compléments Contréles

5

ccessibilté : vérification terminée

OPS/images/03-01.jpg
Fenétre Projet Barres d'outils Barre de menus Fenétre Code

£ Microsoft Visual[Basic pour Aplications - Classeur_chapitre02.xism [cféation]

{ Fichier Edition | Affichage Ifsertion Format Débogage Exécution Qutils Compléments Fendtre
BAaAl - u | & & W » @I Litcon

VBAProject (Classeur

-3 Microsoft Excel Objets

; Feuil1 (Feuil 1) [sub Nombate ()
i ThisWorkbook "
E-{3 Modules ' NomDate Macro
& Module1 f

' Touche de raccourci du clavier: Ctrl+Shift+N
ActiveCell.Select
ActiveCell.FormulaR1Cl = "ESCARTIN"
ActiveCell.Offset (1, 0).Range("Al").Select
ActiveCell.Columns ("A:A") .EntireColumn.ColumnWidth = 16.86
ActiveCell.Select
ActiveCell.FormulaRlCl = "=NOW()"
ActiveCell.Select
Selection.Copy
[(Name) [Module1 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone,
:=False, Transpose:=False
ActiveCell.Offset (-1, 0).Range("Al:A2").Select
ActiveCell.Activate
Application.CutCopyMode = False
With Selection.Font
.Name = "Aptos Narrow"
.Size = 16
.Strikethrough = False
-Superscript = False
.Subscript = False
.OutlineFont = False

Fenétre Propriétés Fenétre Exécution

SkipBlanks

OPS/images/02-02.jpg
Enregistrer une macro ? X

Nom de la macro @

Touche de raccourdi:
Ctrl+

Enregistrer la macro dans:

Ce classeur

Description :

OPS/images/03-02.jpg
Projet - VBAProject n

(-5 Microsoft Excel Objets
&) Feuil1 (Fewil1)
Feuil10 (Chapitre 14)
Feuil2 (Feuil2)
i) Graph1 (Graphique 1)

48 Thisworkbook
(7] Modules
VBAProject (Macro complémentaire.xlsm)
23 Microsoft Excel Objets
B Feuil1 (Feuil1)
4% Thisworkbook
(7] Feuilles
(23 Modules

OPS/images/02-03.jpg
#9 Microsoft Visual Basic pour Applications

Fichier Edition Affichage Insertion For Débogage Exécution Qutils Compléments Fenétre
B-Hfa@anaoc»nakl S »
T X|
E]=]

VBAProject (Classeur1)
- -£53 Microsoft Excel Objets

OPS/images/02-04.jpg
Microsoft Excel X

Les fonctionnalités suivantes ne peuvent pas étre enregistrées dans des classeurs sans macro :

0 + Projet VB
Pour enregistrer un fichier avec ces fonctionnalités, diquez sur Non, puis sélectionnez un type de fichier prenant en charge les macros dans la liste Type de fichier.

Pour continuer 3 enregistrer en tant que classeur sans macro, cliquez sur Oui.

OPS/images/02-05.jpg
Editeurs approuvés

Paramétres des macros

Emplacements approuvés

- Désactiver toutes les macros VBA sans notification
Documents approuvés
Désactiver les macros VBA avec notification

G R G T Désactiver toutes les macros VBA 3 'exception des macros signées numériquement

Compléments Activer les macros VBA (non recommandé, exécution possible de code potentiellement dangereux)

Paramétres ActiveX

2 Activer les macros Excel 4,0 lorsque les macros VBA sont activées

Mode protégé Paramétres de macros pour les développeurs

Barre des messages Accés approuvé au modéle d'objet du projet VBA
Contenu externe

Paramétres de blocage des fichiers

Options de confidentialité

Connexion par formulaire

Annuler

OPS/images/02-06.jpg
Avis de sécurité pour Microsoft Excel ? X

@ Microsoft Office a identifié un probléme de sécurité potentiel.

Avertissement : il est impossible de vérifier que ce contenu provient
d’une source fiable. A moins qu’il offre des fonctionnalités
importantes et que vous approuviez sa source, laissez-le désactivé.

Chemin d'accés au fichier: |\ Traduction'_NULS\2025\WBA pour
les nul sﬂZOZSWBATZOZSTexemp les

Les macros ont été désactivées. Elles peuvent contenir des virus ou
d'autres éléments dangereux pour la sécurité, N'activez pas ce contenu,
sauf si vous étes certain que la source du fichier est fiable,

Plus d'infos

Activer les macros Désactiver les macros

OPS/cover/cover.jpg
Programmation VBA
pour Excel

(Excel 2013, 2016, 2019, 2021 & 2024)

o
S
ict, “uniency 3 |
S Ry
e Ut
5 Crvves
- UbLicBinance - o
cH 3 HebReQUeStURL(Ur1, eqrype)
End Function
Function PrivateBinanca(hethod As strine, Reatye As Sirig, cresnins s o
tring, Cresntiats s octionary, o
Din NonceUnique As String =
Dim TimeCorrection As Long =
ae Dim Url As String P

e(sarsmoict, B

et O evras - i
If Me

e

Rt

~51A256")
putetash_C("SHAZ
sign = ComUt e ethod & 7
A cadesptsite & M
ettonar ible; HSIE .05 Mindous N 5.°
s New DICHIONTY |\ o (compativle; SIESS
Irieaders " oz
pim Ur Add_"UserzAE:

urlteaders-

John Walkenbach

Maitriser Visual Basic Editor ¢ VBA et les fonctions feuille de calcul ¢ Gestion des

erreurs et éradication des bogues ¢ Boites de dialogue et controles personnalisés

