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La science n’est pas un beau diamant bien taillé, lisse et stérile ; c’est un monumental jardin chaotique, plein de fleurs colorées et d’arbustes foisonnants, poussant sur la tourbe, où les nouveaux venus se nourrissent des graines et des restes de leurs aînés et où une variété inconnue vient régulièrement fleurir à un emplacement imprévu.
Pour partager la passion de la science vivante, je crois qu’il faut une forme de théâtre où l’histoire des problèmes, l’histoire des idées, l’histoire des humains s’entrelacent, passant et repassant avec différents rôles comme dans une comédie, où la science et la culture s’entrefécondent.
C’est avec cette conviction que j’ai dispensé des conférences par centaines ces quinze dernières années, devant des publics de tous âges et de tous niveaux, sur l’art mathématique. S’y répondaient sur scène, tout en arabesques, l’histoire des sciences et des techniques, ma recherche propre, des portraits de mes héros et de mes collaborateurs, des révolutions conceptuelles et des énigmes, le plaisir des découvertes et des équations : il en fallait pour tous les goûts ! Je voulais que tout le monde pût en tirer profit sans forcément tout comprendre – on n’attend pas des poètes qu’ils expliquent tous leurs vers, pourquoi l’exigerait-on d’un mathématicien ?
En 2015, j’ai travaillé sur une synthèse de mes thèmes favoris dans un cycle de huit conférences, données à la Maison des métallos à Paris auprès de publics intéressés mais non experts, et dans des établissements scolaires. Ces conférences ont été réunies dans un coffret produit par Cassia Sakarovitch pour la société Shim Sham films et publié par Arte Éditions. Dix ans plus tard, avec plus de recul et encore davantage de conférences au compteur, j’ai compris que le temps était venu de les reprendre et de les enrichir pour la forme plus exigeante de l’écrit.
C’est l’ouvrage que vous tenez entre vos mains : ni un cours de mathématique, ni une histoire des sciences, ni un récit autobiographique, ni un essai, mais la peinture la plus colorée et la plus fidèle que je puisse vous partager, tissée de rêves et de tourbe, de la mathématique vivante et joyeuse.

CÉDRIC VILLANI
Université Claude Bernard Lyon 1 & Académie des sciences


1
Mathématique de la chauve-souris

Que diable peut-il y avoir de mathématique dans la chauve-souris ?
Avant de parler de l’animal, intéressons-nous à la mathématique. Débutons avec la période phare qu’est la Grèce antique. La mathématique existait bien avant cette période, mais les mathématiciens grecs ont transformé le sujet en une façon d’accéder à la connaissance, à la vérité. C’était toute une culture où se sont épanouis quantité de penseurs remarquables, mais j’aimerais en citer particulièrement cinq emblématiques, entre le VIe et le Ier siècle avant notre ère. Thalès en premier lieu, le premier mathématicien dont l’histoire ait gardé le nom. Pythagore, qui professait que le monde est comme un gigantesque rébus, dans lequel la clef de chaque mystère réside dans des rapports entre des nombres. Euclide, l’auteur du plus célèbre traité de mathématique de tous les temps. Archimède, le génie mathématique, celui qui voit mieux et plus loin que tous les autres. Et Ératosthène qui, en mesurant la Terre, démontre que la mathématique peut transformer notre vision du monde.
Il faut toutefois garder un peu de recul devant ces noms glorieux : en réalité, nous ne sommes même pas certains que parmi ces penseurs, les trois premiers aient existé. Cependant, l’école de pensée incarnée par Thalès a vraiment existé, la communauté des pythagoriciens également, et les livres signés Euclide attestent d’une pensée profonde. Le fameux Éléments d’Euclide serait l’ouvrage non religieux le plus édité de l’histoire de l’humanité : plus de mille éditions, en toutes les langues, à toutes les époques. Indémodable.
C’était en fait comme une profession de foi : une nouvelle façon de concevoir la mathématique, tout entière tournée vers le raisonnement et la notion de preuve. Au départ, un nombre limité de postulats appelés axiomes sont déterminés. Il est décidé qu’ils sont considérés comme vrais, et un point d’honneur est mis à en garder un nombre aussi petit que possible.
Voici les cinq axiomes d’Euclide :
1. Un segment de droite peut être tracé en joignant deux points quelconques.
 
2. Un segment de droite peut être prolongé indéfiniment en une ligne droite.
 
3. Étant donné un segment de droite quelconque, un cercle peut être tracé en prenant ce segment comme rayon et l’une de ses extrémités comme centre.
 
4. Tous les angles droits sont congruents : si l’on déplace un angle droit sans le déformer pour le placer sur un autre, ils seront parfaitement superposés.
 
5. Si deux lignes droites sont sécantes avec une troisième de telle façon que la somme des angles intérieurs d’un côté est inférieure à deux angles droits, alors ces deux lignes sont forcément sécantes de ce côté.

Observons le premier : « Entre deux points quelconques, on peut tracer un segment de droite. » L’on peut se le figurer sans difficulté, on fait cela avec une règle. Et il faut bien qu’un postulat mathématique y corresponde. Le deuxième : « Un segment de droite peut être prolongé indéfiniment en une ligne droite. » Cela aussi paraît raisonnable. Même si le terme « indéfiniment » pose question. Car je ne suis pas en mesure, en réalité, de tracer un segment d’un million de kilomètres ! Cet axiome est évidemment faux sur la surface de la Terre, puisqu’il a besoin d’une surface vraiment plane. En somme, ces axiomes ne sont pas notre réalité : ils en constituent des règles épurées, idéalisées, une partie de notre réalité géométrique. Mais cette version épurée nous paraît tout à fait raisonnable. C’est comme une idéalisation, une extrapolation de ce que nous pouvons tracer sur notre feuille de papier ou le sable d’une plage.
Le troisième axiome correspondrait à la construction du compas… Etc. Il y a tant à dire sur le cinquième postulat ! Il a fait couler beaucoup d’encre, parce qu’on le jugeait moins naturel que les autres, parce qu’on a voulu à toute force le démontrer plutôt que l’admettre… mais ici, je veux juste insister sur la démarche. Celle qui préconise de se concentrer sur un petit nombre de postulats et établit que le reste s’en déduit par raisonnement logique.
 
Que trouve-t-on dans les écrits d’Euclide ? Ceci, par exemple.
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Le théorème de Pythagore ! Sans conteste le plus célèbre de tous les théorèmes.
[image: ]
Comme ils ont la même longueur de côtés, ils ont la même aire, donc :
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donc :
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Cette série de figures est la démonstration du théorème, soit une suite d’étapes dont l’enchaînement est logique. À la fin, le résultat est démontré uniquement grâce aux postulats de départ et à notre raisonnement. Les initiales au bas de la figure, Q.E.D., correspondent à la locution latine quod erat demonstrandum, « ce qu’il fallait démontrer », qui marque la fin de la démonstration, le point final. Cette façon de faire de la mathématique s’apparente à de l’art ! De fait, elle a attiré de nombreux admirateurs, et non des moindres.
Découvrons les citations de deux d’entre eux. Le premier écrivit ceci :
[J’ai étudié] jusqu’à ce que je puisse prouver n’importe quelle proposition des six livres d’Euclide sur simple demande. […] J’ai ainsi découvert ce que démontrer signifie.

Connaître toutes les propositions d’Euclide n’est pas une mince affaire, croyez-moi ! Nous avons affaire à un passionné… En effet, la mathématique n’est pas seulement affaire d’obtenir des résultats, elle est aussi un entraînement au raisonnement logique, déductif.
 
Le second fan énonça :
La mathématique jouit d’une estime toute particulière, au-dessus de toutes les autres sciences. Une raison en est que ses lois sont absolument certaines et indiscutables, alors que celles des autres sciences peuvent être contestées, et en constant danger d’être renversées par une nouvelle découverte.

Dit autrement, ce qui est démontré avec la méthode d’Euclide ne repose que sur le raisonnement et reste donc éternellement vrai.
Ces citations semblent émaner de mathématiciens… Pas exactement. La première est l’œuvre d’un homme politique : Abraham Lincoln. Sans doute le plus populaire de tous les présidents des États-Unis. Parce qu’il était un homme de loi, il passait son temps à démontrer – l’innocence d’un client, notamment. Il considérait ainsi que la meilleure école pour apprendre la démonstration était la mathématique. La seconde appartient à un physicien reconnu : Albert Einstein ! Il avait bien compris que pour mettre au point ses plus belles découvertes, la mathématique sophistiquée lui était indispensable. C’était un mathématicien dans l’âme, sincèrement amoureux de la beauté mathématique, et de son vivant, il était souvent présenté comme mathématicien.
 
Attardons-nous sur les théorèmes d’Euclide. Que dit le théorème de Pythagore ? Observons un triangle rectangle, c’est-à-dire avec un angle droit. Il est composé d’un grand côté – celui qui est opposé à l’angle droit, appelé hypoténuse – et de deux petits côtés.
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Le théorème explique que la somme des carrés des deux petits côtés est égale au carré du grand côté. Regardons dans notre exemple : 3 au carré, qui fait 9, ajouté à 4 au carré, qui fait 16, cela est bien égal à 25, qui est 5 au carré.
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Et réciproquement : si la somme des carrés des petits côtés est égale au carré du grand côté, alors le triangle est rectangle.
Pythagore n’a pas réellement découvert ce théorème, que l’on connaissait déjà dans l’Égypte antique. Mais en mathématique, celui dont on garde le nom n’est pas forcément le découvreur ! Parfois, c’est quelqu’un qui a donné la première démonstration, ou une démonstration meilleure que les autres, ou bien c’est quelqu’un qui a montré quel parti l’on pouvait tirer du théorème… Parfois, il y a erreur historique sur l’attribution. Peu importe, tout le monde s’entend sur le fait que ce théorème est bien appelé théorème de Pythagore, et son énoncé s’insère à merveille dans la culture pythagoricienne. En quoi est-il intéressant ? D’abord parce qu’il est nécessaire à la réalisation de constructions, comme celle d’un angle droit. Encore aujourd’hui, des maçons qui n’ont jamais suivi de cours de mathématique savent que pour vérifier qu’un angle est droit, il faut mesurer à partir de l’angle trois unités sur un mur et quatre unités sur l’autre mur, et vérifier que les deux points ainsi obtenus sont distants de cinq unités. Imparable !
Ensuite, en géométrie, les concepts les plus fondamentaux sont sans doute les distances et les angles. Or Pythagore explique que ces deux notions sont liées alors que rien ne le laissait présager. En effet, à partir d’une information sur les angles, on peut déduire une information sur les distances, et inversement. En somme, c’est un théorème qui nous parle des fondements mêmes de la géométrie.
 
Allons plus loin, car ce théorème dévoile une autre facette. Voyez ce deuxième triangle rectangle.
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À gauche, c’est une figure géométrique, en l’occurrence un triangle. À droite, c’est une équation du type x2 + y2 = z2, où x, y et z sont des nombres entiers. Chaque fois que l’on trouvera un triangle rectangle, avec des côtés dont les longueurs sont des nombres entiers, cela correspondra à la solution de cette équation algébrique avec des entiers. Autrement dit, à gauche, c’est un problème de géométrie, à droite, un problème d’algèbre, et Pythagore révèle le lien entre les deux.
C’est un bon exemple des passerelles qu’on peut trouver entre différents sujets, au sein même de la mathématique. Et plus généralement, c’est un fait que les sciences progressent énormément par passerelles entre disciplines, entre façons de penser.
On pourrait ajouter que Pythagore est un théorème d’usage constant pour déduire d’autres choses. Un article de recherche peut très bien utiliser des centaines de fois le théorème de Pythagore, caché dans d’autres énoncés ou sous-énoncés qui l’utilisent.
 
Poursuivons l’exploration du théorème de Pythagore et considérons un rectangle avec ses deux diagonales.
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ABD est un triangle rectangle en A. Le théorème de Pythagore peut s’écrire comme suit :
 
AB2 + AD2 = BD2
 
De même pour le triangle BCD, qui est rectangle en C :
 
CB2 + CD2 = BD2
 
Étant donné que les deux diagonales sont égales, nous avons :
 
BD2 = AC2
 
Additionnons les deux relations. Apparaît un joli énoncé que l’on pourrait appeler « théorème de l’enveloppe », en référence à la physionomie de la figure :
 
AB2 + BC2 + CD2 + DA2 = AC2 + BD2
 
Cet énoncé nous dit tout simplement que dans n’importe quel rectangle, la somme des carrés des quatre côtés est égale à la somme des carrés des deux diagonales.
Jusqu’ici, tout va bien. Jusqu’au jour – je me souviens encore du choc ressenti au détour d’un exercice – où l’on découvre que dans un parallélogramme aussi, la somme des carrés des côtés est égale à la somme des carrés des diagonales.
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AB2 + BC2 + CD2 + DA2 = AC2 + BD2
 
Comment est-ce possible ? Les angles droits semblaient essentiels, pourtant. En réalité, cela se démontre aisément, le même théorème est vrai sans angle droit. Car ce qui compte, ce n’est pas que les angles soient droits, c’est que les côtés soient parallèles deux à deux.
On le sait de nos cours de sciences au lycée, la généralisation est une forme de raisonnement extrêmement importante, et souvent elle est implicite, admise. Ce que vous voyez sur la croissance de cette plante est vrai pour toutes les plantes, la trajectoire de cette balle serait aussi celle de n’importe quel objet lancé, l’expérience de physique reste vraie même si la température change, etc. On sait que quelque chose est vrai dans un certain contexte, et on se demande si tel est toujours le cas dans un contexte plus général, en enlevant une hypothèse. En mathématique, démontrer puis expliciter une généralisation se fait à l’aide de dessins, de raisonnements ; des outils dont chacun dispose et peut s’emparer par soi-même.
La mathématique est la seule discipline dans laquelle l’élève peut tout vérifier par lui-même, sans avoir jamais besoin de faire confiance à son enseignant. Ce n’est pas le cas de la physique, où il est, par exemple, communément admis que la matière est faite d’atomes, sans qu’aucun d’entre nous ou presque n’ait jamais vu d’atome. Reste que nous sommes persuadés que les atomes existent, parce qu’on nous l’a expliqué, enseigné1. Cependant, vous n’avez certainement pas refait par vous-même les expériences correspondantes pour vous en convaincre, car c’est d’une très grande sophistication et cela a nécessité bien des prix Nobel… Alors qu’en mathématique, vous pouvez tout refaire et tout vérifier par vous-même, et cela est précieux pour développer votre sens du raisonnement.
Quand le professeur de mathématique donne un énoncé, il est possible de vérifier sa démonstration. Voire d’y découvrir une erreur. Quand j’étais au lycée, il m’est arrivé de questionner un professeur à la fin du cours sur un endroit que j’avais trouvé bizarre, sur un contre-exemple dans sa démonstration. Si le professeur est honnête, il est bien forcé d’admettre son erreur et de la corriger. Des années plus tard, lorsque je suis devenu professeur à mon tour, à l’École normale supérieure de Lyon, les élèves m’interpellaient assez régulièrement pour me signaler un problème dans une démonstration. Invariablement, je leur répondais sur le ton de la rigolade que c’était pour voir s’ils suivaient, mais je tenais compte de leurs remarques.
Vous pouvez également trouver d’autres points de vue, d’autres démonstrations que celles de l’enseignant. Alors qu’il était lycéen, Einstein lui-même était très fier d’avoir trouvé une nouvelle démonstration du théorème de Pythagore ! On a longtemps cru, à la lecture de ses Mémoires, qu’il avait simplement retrouvé l’une des centaines de démonstrations déjà connues du théorème… jusqu’au jour où un ancien élève d’un ancien élève d’Einstein a révélé quelle était cette fameuse démonstration. Elle était effectivement nouvelle ! Dotée d’une intéressante intuition physique et facile à comprendre, qui plus est. Lorsque j’ai entendu parler de cette histoire, cela m’a rappelé ma propre fierté quand j’ai pu, lycéen, trouver ma propre preuve de tel ou tel problème classique.
Pour revenir à mes amours mathématiques au lycée, mon sujet préféré était la géométrie du triangle, même si la matière que je préférais entre toutes était la biologie, et plus particulièrement la biologie évolutive. J’étais fasciné par la diversité et la beauté du monde animal… Reste qu’au sein des arts mathématiques, si je puis dire, mon préféré était la géométrie du triangle. Je repense encore avec nostalgie à un livre aujourd’hui démodé, qui me plaisait tant, écrit par Yvonne et René Sortais sur ce sujet2. Pourtant ce domaine tant aimé, il faut bien l’avouer, ne suscite plus aucune recherche, ni n’offre la moindre application pratique ! Mais son étude n’en est pas moins d’une grande utilité. C’est avec la géométrie du triangle que je me suis initié à l’art de la démonstration. Je me souviens très bien de la séance de cours de quatrième où, pour la première fois, nous avons découvert l’étude de ce savoir-faire. Plus tard, faire des démonstrations est devenu mon métier. Mais avant d’arriver à en faire tenir debout une de 100 pages sur un problème compliqué de physique mathématique, il est primordial de s’exercer avec des démonstrations toutes simples, pas plus d’une dizaine de lignes, et portant sur des objets aussi accessibles que des triangles et des cercles.
 
 
 
La géométrie du triangle est fascinante parce qu’elle permet des miracles. En fait, toutes les branches mathématiques ont leurs petits miracles, mais en géométrie du triangle, ils sont faciles à exprimer. Parfois, trois ou quatre points s’alignent. D’autres fois, ce sont six, huit, ou neuf points qui se retrouvent sur un même cercle. Une incroyable coïncidence !
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Mais ce que l’on apprend en s’entraînant à la géométrie du triangle, c’est que les miracles n’existent pas : il y a toujours une explication. D’une belle coïncidence se dévoile une belle démonstration, et le grand principe, c’est qu’on ne perd jamais au change. On déplace le champ d’émerveillement, mais l’émerveillement persiste.
 
Sans m’étendre outre mesure sur ma formation mathématique, je m’arrête sur mes années passées à l’École normale supérieure, institution qui a formé le plus de lauréats de la médaille Fields au monde. Il en existe quatre sur le territoire national : Paris-Ulm, Lyon, Paris-Saclay, Rennes. Comme tout étudiant en sciences, j’y fus confronté à la spécialisation. Pour la première fois, je devais choisir une sous-discipline au sein de toute la mathématique. Il est impossible de tout mener de front, et donc obligatoire de se spécialiser. Allais-je partir en géométrie, mon amour de jeunesse ? Ou en algèbre, qui m’avait ébloui en classe préparatoire ? Ou en probabilité, la branche mathématique qui a le plus progressé au XXe siècle ? Ou en analyse, qui portait la promesse de s’appliquer à toutes les sciences physiques et naturelles ? Ou en statistique, branche longtemps sous-estimée mais aujourd’hui en spectaculaire regain de vigueur ? Ou, plus original, en combinatoire ou en logique ? Ou faire un pas de côté ? Certains de mes camarades de classe, mathématiciens au départ, sont devenus algorithmiciens, physiciens, chimistes, biologistes, économistes, entrepreneurs, investisseurs ou même théologiens !
En ce qui me concerne, je suis resté dans la voie mathématique et j’ai cherché le bon aiguillage. Souvent, quand vous êtes dans une formation supérieure en mathématique, votre famille considère que vous êtes… un peu particulier. Quand vous leur dites qu’il vous faut vous spécialiser, ils pensent que vous êtes complètement perdu. Encore plus quand vous expliquez qu’il vous faut petit à petit vous spécialiser davantage, en choisissant une sous-branche, puis une sous-sous-branche, voire une sous-sous-sous-branche dans laquelle vous pouvez faire votre trou, c’est-à-dire votre thèse. Se sur-spécialiser à un jeune âge est une bonne option, car il est beaucoup plus efficace, pour avoir une vision large, de commencer par approfondir dans une direction et ensuite d’élargir le spectre, que de chercher à tout mener de front. En tout cas, c’est ainsi que j’ai procédé ! J’étais très curieux de quantité de sujets, mais pour la recherche, j’ai commencé par un couloir très précis et étroit.
Je me suis donc spécialisé, en partie par hasard, dans l’analyse, et plus particulièrement dans l’étude mathématique de certaines équations de la physique : la physique statistique, la physique des gaz et celle des plasmas, l’étude du désordre et de la stabilité… Ce n’était pas du tout un rêve d’enfant. Mais quand il a fallu choisir mon master approfondi, ou diplôme d’études avancées, j’ai été emballé par l’intervention d’un professeur charismatique qui nous faisait miroiter qu’à travers les équations aux dérivées partielles, on pouvait faire de la superbe biologie mathématique : c’est ce qui m’a décidé ! Finalement, sous l’impulsion de mon tuteur scientifique, j’ai opté pour la physique mathématique dans un domaine lié à la thermodynamique – quelle ironie, alors que j’avais précisément détesté ce cours de physique ! Même si c’était un mariage arrangé, cela m’a rendu très heureux. Je suis littéralement tombé amoureux de mon sujet – avec un certain nombre de grandes équations qui ont hanté mes jours et parfois mes nuits, des problèmes qui m’ont passionné et continuent à me passionner, et quelques découvertes que j’ai eu la chance de faire, jusqu’à finalement ajouter mon nom à la longue liste des lauréats français de la médaille Fields.
Le 19 août 2010 – le genre de date que l’on n’oublie jamais –, à Hyderabad, la présidente de l’Inde m’a remis la fameuse médaille en or massif ornée du portrait d’Archimède. La médaille Fields est souvent appelée « prix Nobel des mathématiciens », mais en fait, plusieurs différences notables existent avec le prix Nobel. La première est la limite d’âge, fixée à 40 ans pour la médaille Fields. Une autre différence porte sur la somme versée : celle octroyée pour la médaille Fields est environ le centième de celle du Nobel – la sobriété mathématique, certainement. Plus important encore : la médaille est décernée non par une Académie des sciences, mais par l’Union mathématique internationale, émanation de toutes les communautés mathématiques du monde, et à l’occasion du Congrès international des mathématiciens qui a lieu tous les quatre ans, à la différence du Nobel qui est annuel.
Elle est attribuée, d’ordinaire, à quatre mathématiciens ou mathématiciennes. Mais les femmes y sont très minoritaires : à ce jour, en 2025, seules 2 femmes ont été récompensées sur 64 récipiendaires, l’Iranienne Maryam Mirzakhani et l’Ukrainienne Maryna Viazovska. Une faible représentation due au poids des discriminations historiques, des clichés et des biais culturels. Dans cet ouvrage, vous lirez parfois mathématicienne là où l’usage demanderait le masculin, cela non pour exclure mais pour justement mettre en avant les femmes dans cette discipline en particulier, et dans les sciences en général.
Ce prix est donc attribué au nom de la communauté internationale, par la communauté internationale, et devant la communauté internationale. Devant vos collègues, en somme. Recevoir cette distinction implique des devoirs et des obligations, notamment celle de représenter la communauté internationale des mathématiciens auprès de toute la scène nationale et internationale. Tout un changement, tout un programme. En quelques semaines, j’ai été sollicité par presque tous les médias et même cité dans les pages de magazines de mode, avec des surnoms poétiques tels que « Le Boss des maths » (un grand classique) ou « La Lady Gaga des mathématiques » (moins classique !).
Cela m’a permis de découvrir à quel point les scientifiques sont populaires. Je me suis retrouvé à recevoir des invitations pour quantité de projets. Par exemple, je suis devenu président de l’association Musaïques aux côtés de son fondateur, Patrice Moullet. Un artiste ingénieur autodidacte génial qui fabrique des instruments très audacieux, avec un grand pouvoir d’exploration de nouvelles musicalités et d’interaction avec des jeunes en situation de handicap. J’ai donné des conférences devant toutes sortes d’auditoires aux quatre coins du monde. Précisons que peu de gens voyagent autant que les mathématiciens, grâce aux colloques qui nous permettent de discuter de nouvelles idées. Ajoutons à cela un devoir de représentativité au-delà de notre communauté, et les voyages s’enchaînent à tout va ! Avec des invitations en provenance de tous les continents, car toutes les nations qui souhaitent peser au sein de la communauté internationale et se développer économiquement sont attentives à faire fructifier leur capital mathématique – particulièrement à notre époque bourrée d’algorithmes, c’est-à-dire de recettes mathématiques pour accomplir des calculs et des tâches !
 
De quoi me demandait-on de parler ?
De ce qu’il y a de mathématique dans le monde qui nous entoure et des raisons pour lesquelles il est important de pouvoir mathématiser les choses. C’est une conception qui remonte à Galilée, et plus anciennement aux pythagoriciens : l’idée que « l’Univers est écrit en langage mathématique » et que dans n’importe quelle situation, n’importe quel phénomène, n’importe quelle scène, comme ici ce léopard sautant sur sa proie, on peut voir un bon nombre d’équations en mathématique.
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Quelques-unes sont représentées dans ce dessin, mais s’il fallait les y intégrer en totalité, nous obtiendrions un annuaire entier. À quoi cela sert-il ? À aller au-delà de l’intuition, car pour appréhender les choses finement, ces équations mathématiques sont indispensables. En résumé, à partir de n’importe quel sujet ou presque, un exposé mathématique est possible.
Ce qui nous amène au cœur de notre sujet. Une année après la réception de la médaille, j’ai accepté, comme souvent, de donner une conférence mathématique aux élèves d’un établissement scolaire. Épuisé par tous les exposés donnés les mois précédents, j’avais besoin d’un sujet nouveau. En panne d’inspiration, j’ai demandé conseil à l’enseignante qui organisait la conférence, histoire de trouver un thème qui collerait bien à l’actualité. Quand j’ai découvert que 2011 était, entre autres, l’année internationale de la chauve-souris, mon sang d’amoureux de la vie animale n’a fait qu’un tour ! Le titre de ma conférence serait donc « Mathématique de la chauve-souris », à la grande surprise de mon interlocutrice.
À ce moment-là, je n’avais aucune idée du contenu. Mais c’était comme un défi : si tout est mathématique, la chauve-souris l’est aussi. De fait, en préparant le sujet, je me suis vite rendu compte que la chauve-souris, effectivement, est bourrée de mathématique !
 
Parlons un peu des chauves-souris, si vous le voulez bien. La chauve-souris a mauvaise réputation. On l’associe souvent à une créature démoniaque ; elle peuple les histoires fantastiques, les récits d’épouvante… sans oublier le célèbre super-héros, Batman ! Un super-héros qui est d’ailleurs plus intéressant que les autres, puisqu’il est le seul à ne posséder aucun super-pouvoir. Il tire sa force uniquement de sa puissance physique, de son intelligence, de la technologie… et de son immense richesse. C’est peut-être parce que la chauve-souris est déjà un animal à qui l’on prête, consciemment ou inconsciemment, des pouvoirs surnaturels, que les créateurs de Batman n’ont pas jugé nécessaire de lui conférer des super-pouvoirs.
La chauve-souris fascine, ne serait-ce que par ses formes étonnantes, d’une incroyable diversité, comme en témoigne la planche Chiroptera du célèbre naturaliste Ernst Haeckel dans son ouvrage de 1904, Formes artistiques de la nature3. Et de fait, les chauves-souris constituent l’ordre de mammifères le plus diversifié après celui des rongeurs.
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Planche Chiroptera issue de Formes artistiques de la nature, Ernst Haeckel.
Un millier d’espèces. Des petites, des grandes ; certaines qui se nourrissent d’insectes, d’autres de fruits, quelques-unes de sang.
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Toutes très mignonnes – celle de droite répond au doux nom de Phyllostomidae artibeus. Mais aucune n’est aussi jolie que ci-dessous Hypsignathus monstrosus.
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Évidemment, on ne peut qu’être attendri par ces charmantes bêtes. Pourtant, certains esprits chagrins ne leur trouveront ni charme ni utilité. Fort heureusement, toutes les espèces participent à la grande poésie du vivant, qu’elles soient utiles ou non. Quant à la chauve-souris, elle est justement utile ! Un article paru il y a quelques années dans la célèbre revue Science insistait sur l’importance économique des chauves-souris pour l’agriculture.
Les chauves-souris sont des prédateurs voraces d’insectes nocturnes parmi lesquels de nombreux nuisibles aux champs agricoles et aux forêts. Nos analyses suggèrent que la disparition des chauves-souris en Amérique du Nord induirait des pertes agricoles estimées à plus de 3,7 milliards de dollars par an. […] Il est urgent d’éduquer le public et le législateur sur l’importance écologique et économique des chauves-souris, et de proposer des solutions pratiques de préservation4.

La chauve-souris comme meilleure alliée de l’agriculteur ! Elle est un insecticide extraordinaire, efficace et sans effet secondaire. Seules les araignées font aussi bien !
Cependant, si l’animal nous fascine, c’est avant tout parce qu’il vole.
Parmi les animaux volants, c’est certainement le plus proche de nous en termes de morphologie, bien plus que les oiseaux et encore plus que les insectes volants. C’est peut-être pour cela que les premières tentatives de machines volantes s’inspiraient de la chauve-souris plutôt que de l’oiseau ou de la libellule. La célèbre machine volante de Clément Ader, « Éole », exposée au Conservatoire national des arts et métiers, en est un superbe exemple.
Dans le vol de la chauve-souris, toutes sortes de phénomènes physiques entrent en jeu, dont le mouvement des ailes et l’interaction avec l’air. Pour l’expliquer, il faut le mettre en mathématique. Comment procède-t-on ? D’abord en étudiant le milieu dans lequel se meuvent les chauves-souris – ce fluide insaisissable qu’est l’air.
C’est une chose d’avoir des théorèmes qui parlent de triangles et de cercles, mais une tout autre chose de concevoir ou démontrer des théorèmes qui parlent, par exemple, des mouvements de l’eau dans une bouteille que vous agitez, ou des mouvements dans l’air autour de nous. En sachant que c’est seulement avec les expériences d’Evangelista Torricelli et Blaise Pascal, au XVIIe siècle, qu’est découvert le fait que l’air est pesant et qu’il exerce une pression.
 
Les premiers à se lancer dans l’aventure, ce sont des Suisses, au XVIIIe siècle : Daniel Bernoulli, l’un des représentants de la plus célèbre dynastie de mathématiciens de l’histoire ; et Leonhard Euler, considéré par beaucoup comme le plus puissant mathématicien de tous les temps. En 1755, grâce à leurs efforts, naît l’« équation d’Euler », la première à décrire le mouvement d’un fluide.
        ∇  ⋅  u  =  0        ∂u  ∂t    +  u  ⋅  ∇u  +  ∇p  =  0    
EULER (1755)
Le u représente la vitesse du fluide, le courant en chaque point. Puis il y a un p, qui représente la pression exercée par le fluide. L’une et l’autre sont des fonctions, des quantités qui varient dans le temps et l’espace : pour chaque instant et chaque position, il y a une valeur de la vitesse et il y a une valeur de la pression. La vitesse du fluide et la pression sont liées, ou plutôt leurs variations sont liées, à chaque instant et à chaque endroit ; c’est ce que nous dit cette équation.
Pour Bernoulli et Euler, il s’agissait d’un fluide idéal, qui serait ce que l’on appelle « incompressible », c’est-à-dire, de façon simplifiée, dont la densité ne varie jamais avec la pression. Le fluide est aussi « inviscide », car il n’y a pas de frottements internes. En un sens, un fluide parfait.
Cette équation marquait un progrès considérable. Reste qu’elle n’allait pas sans difficultés… Comme le Français Jean-Baptiste d’Alembert le remarqua, un paradoxe y était associé :
La théorie, développée avec toute la rigueur possible, donne, au moins dans plusieurs cas, une résistance nulle, paradoxe singulier que je laisse les géomètres futurs résoudre5.

Là où il parle de « géomètres », nous dirions aujourd’hui « mathématiciens ».
Pourquoi est-ce un paradoxe ? « Résistance nulle », cela signifie que vous vous déplacez dans le fluide sans sentir aucune résistance. C’est ennuyeux, parce que s’il n’y a pas de résistance dans l’air, comment la chauve-souris peut-elle s’appuyer dessus pour voler ?
Une légende raconte qu’à cette époque, l’Académie des sciences mit à concours le problème d’expliquer le vol des oiseaux : la seule démonstration rigoureuse fut celle d’Euler, qui prouvait… que les oiseaux ne peuvent pas voler ! C’était fâcheux. On pourrait penser que le vol des oiseaux échappe à la modélisation mathématique, mais il n’en est rien. C’est le modèle qui pose problème. En trouvant une autre équation qui s’approche au plus près de la réalité, le phénomène sera modélisable.
Cette autre équation, plus précise, est découverte au XIXe siècle par le Français Claude-Louis Navier et l’Anglais Sir George Stokes. Si les équations de Navier-Stokes sont plus élaborées que celles d’Euler, c’est qu’elles prennent en compte un élément supplémentaire : la viscosité du fluide. La viscosité, c’est la tendance du fluide à subir des frottements internes. Cela change tout.
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NAVIER-STOKES (1820, 1845)
Ci-dessous, c’est la variante des équations de Navier-Stokes, dite « compressible », dans laquelle on tient compte non seulement des frottements internes, mais aussi des variations de densité du fluide.
          ∂ρ  ∂t    +  ∇  ⋅  (ρu)  =  0        ∂ρu  ∂t    +  ∇  ⋅  (ρu⊗u)  +  ∇p  =  ∇  ⋅  τ  +  ρf        ∂ρe  ∂t    +  ∇  ⋅  [(ρe  +  p)u]  =  ∇  ⋅  (τ  ⋅  u)  +  ρf  ⋅  u  –  ∇q  +  τ    
Ces équations ont eu une destinée extraordinaire, elles ont littéralement conquis le monde.
Par exemple, dans tous les films catastrophe hollywoodiens, ces blockbusters avec un budget faramineux, beaucoup d’adrénaline et peu de subtilité… Chaque fois que le pauvre scénario nécessite une vague géante, une explosion cataclysmique ou un nuage de fumée, ces effets spéciaux sont élaborés grâce à l’équation de Navier-Stokes et ses cousines.
Navier-Stokes est aussi un ingrédient fondamental pour prédire la météo, calculer les formes optimales de coques de navires pour qu’ils soient aussi rapides que possible, ou encore, puisque le sang est un fluide, modéliser les flux sanguins. Et les divers paramètres, les diverses variantes des équations permettent ce grand écart : modéliser toutes sortes de fluides, aussi bien le sang que l’océan !
Les équations de Navier-Stokes n’auraient jamais pu s’étendre à autant de domaines sans les ordinateurs, qui sont l’invention la plus importante du XXe siècle, ou en tout cas celle qui a eu le plus d’impact sur les sciences et les accomplissements humains. Ces machines sont nées en partie grâce à l’imagination et au génie de John von Neumann, Alan Turing, ou Claude Shannon. Tous trois étaient à la fois mathématiciens et ingénieurs, et passionnés par le même problème : comment calculer automatiquement la solution de n’importe quelle équation de physique mathématique ? Une machine qui peut mettre en œuvre n’importe quel programme mathématique est la définition la plus juste de ce qu’est un ordinateur.
 
Des modèles, des équations, des ordinateurs : nous voilà en possession de tous les outils nécessaires pour étudier les chauves-souris en mathématique !
Observer le vol d’une chauve-souris au ralenti6, c’est être saisi par la grâce du mouvement de l’animal. Telle une nage, tout y est élégant et efficace. Les membranes des ailes sont marquées de subtiles ondulations. Comment étudier cela de façon précise ? En s’intéressant notamment aux trajectoires de l’air autour des ailes de la chauve-souris. Pour cela, les scientifiques font voler une chauve-souris dans un tunnel empli de fumée afin d’observer les tourbillons qui sont engendrés dans son sillage, témoignant des phénomènes physiques subtils qui s’y déroulent7.
Ces phénomènes sont reproductibles mathématiquement à l’aide d’équations traitant du mouvement des ailes et de l’interaction avec le fluide. Des chercheurs se consacreront à ce travail corps et âme durant des décennies, tels Kenny Breuer et Sharon Swartz, de la Brown University.
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Sur ce schéma, les flèches nous parlent du courant situé autour des ailes de la chauve-souris, reconstitué en partie par des observations astucieuses et en partie par des modèles mathématiques comme les équations de Navier-Stokes. Le petit objet à droite ci-dessous se nomme « Ro-bat », un modèle de chauve-souris perfectionné année après année en collaboration avec d’autres chercheurs disséminés aux quatre coins du monde.
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Voici la profession de foi de ce programme de recherche sur le vol de la chauve-souris :
Notre équipe de recherche pluridisciplinaire est essentiellement constituée de chercheurs en biologie et en sciences de l’ingénieur, et inclut des collaborations importantes avec des chercheurs en informatique et en mathématique appliquée. Tous travaillent à caractériser les aptitudes exceptionnelles des chauves-souris pour le vol, à comprendre le rôle que les os, la morphologie de la peau et le mouvement des ailes jouent dans ses capacités, à modéliser ces mécanismes et enfin à les imiter dans des systèmes motorisés8.

Un texte qui souligne que la mathématique, de plus en plus, se pense en collaboration avec les autres sciences dans des projets pluridisciplinaires. À travers ces mots-clefs apparaissent les grands principes de la démarche scientifique : décrire, caractériser, comprendre, modéliser – c’est-à-dire transformer en une équation mathématique. Quant à imiter et reproduire, c’est la connexion avec la technologie.
Une aventure fascinante, donc, que le vol de la chauve-souris. Et pleine de mathématique, pour peu qu’on la regarde avec les bonnes lunettes.
 
Les chauves-souris nous fascinent par l’élégance de leur vol, mais aussi parce qu’elles sont capables de l’effectuer même dans le noir complet. Une croyance veut que les chauves-souris soient aveugles. C’est erroné, du moins en partie. En revanche, il est avéré qu’elles voient, en un sens, avec leurs oreilles. En émettant des sons, des petits cris, elles en écoutent l’écho et en déduisent des informations sur ce qui les entoure. C’est ainsi qu’elles se repèrent, évitent les obstacles et cherchent leurs proies. C’est ce qu’on appelle le sonar.
La chauve-souris n’est pas le seul être vivant à avoir développé cette faculté d’écholocalisation : le dauphin, le mignon tarsier des Philippines et certains oiseaux, comme le martinet, l’ont aussi. Les amateurs de folklore japonais penseront également à Zatoichi, le samouraï aveugle, d’une habileté extraordinaire dans le maniement du sabre, qui ne se repère pourtant qu’à l’aide des sons !
Certains êtres humains – appelés parfois « chauves-souris humaines » – devenus aveugles très jeunes ont développé cette faculté. Ils peuvent explorer leur environnement en émettant de petits sons avec la langue et en écoutant l’écho qui leur parvient. Il a même été montré que c’est une faculté que nous avons tous, ou presque9. Avec un bon entraînement, nous pourrions arriver à repérer des obstacles grâce à l’écho.
L’écholocalisation est aussi sous-jacente à de nombreuses technologies. Elle est utilisée entre autres pour repérer les fonds marins depuis des bateaux, ou mesurer des vents à partir des échos de rayons laser. Ou encore pour détecter les obstacles aériens à partir d’ondes radio. Ce sont des technologies dites respectivement sonar, lidar et radar. Toutes s’appuient sur le comportement des ondes.
Une onde, c’est un phénomène qui se propage dans un espace identique à lui-même, et dont la propagation peut varier à la rencontre d’un obstacle – changer de direction, d’intensité ou de fréquence.
Il existe plusieurs équations des ondes, mais voici la plus simple – la mère de toutes les autres !
     ∂ 2  ϕ  ∂ t 2      –   c 2     ∂ 2  ϕ  ∂ x 2      =  0
Dans ces trois techniques – sonar, radar, lidar –, le principe est le même. Une onde est envoyée, la réflexion est comparée à ce qui a été envoyé, et des informations en sont tirées. La chauve-souris fait cela, elle aussi, avec un signal qui est le son.
Mais qu’est-ce que le son ? Qu’est-ce qu’une onde de son ou plutôt une onde sonore ?
Une onde sonore, ce sont de petites variations de pression : haute pression, basse pression, haute pression, basse pression, se succédant à très grande vitesse. Ce qui constitue toute la saveur du son, si l’on peut dire, c’est la fréquence de ces battements.
Avez-vous déjà fait sonner un diapason ? Lorsque ses branches sont cognées dans le but de les faire vibrer, l’objet émet un son bien précis, toujours la même note : un la. Que se passe-t-il précisément ? Le diapason vibre d’une certaine manière, déterminée non par le coup donné, mais par sa forme et ses dimensions. Et cette vibration engendre de petites variations de pression, qui se propagent alors dans l’air sous forme d’ondes.
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Sur les images, vous voyez le diapason changer de forme au gré de ses vibrations, ainsi que les variations de la pression autour de lui. Là où les traits sont resserrés, cela correspond à de la haute pression – imaginons que les molécules sont serrées les unes contre les autres ; en revanche, là où les traits sont espacés, c’est relâché, ce qui équivaut à de la basse pression. Le phénomène alterne, comme cela, en ronds concentriques. Ces ronds se déplacent, s’éloignent continuellement du centre comme les ronds dans l’eau lorsqu’on y a jeté un caillou.
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Lorsque l’onde parvient à notre oreille, le tympan se met à vibrer, nous permettant de percevoir ces variations de pression – haute pression, basse pression, et ainsi de suite. Ce qui fait que nous entendons ce son, en l’occurrence un la.
 
Comment analyser ce son, à partir de la forme des ondes ?
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Notre oreille est sensible à deux paramètres. D’abord l’amplitude, qui correspond à l’amplitude de variation de pression – si elle varie plus ou moins fort. L’amplitude nous donne la force du son.
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Ensuite la fréquence, qui correspond au nombre de battements par seconde. L’inverse de la fréquence, c’est le temps qu’il faut au signal pour redevenir identique à lui-même. Plus la fréquence est élevée, plus le son entendu est aigu. La fréquence nous donne la hauteur, la note !
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Voici la représentation d’un son fort et aigu, et d’un son doux et grave.
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Savez-vous qui a mis la musique en nombres pour la première fois ? C’est notre vieille connaissance, Pythagore. Ou ses disciples, peut-être. En tout cas, ce sont les pythagoriciens qui ont construit le pont entre musique et mathématique. Évidemment, à l’époque de Pythagore, ni la pression atmosphérique ni la fréquence n’étaient connues. Mais il aurait remarqué, d’après le récit parvenu jusqu’à nous, que les sons produits par les forgerons tapant sur leurs enclumes dépendaient de la taille et de la masse des enclumes. Les disciples du mathématicien ont constaté ensuite que le son émis par une corde vibrante dépend de sa longueur. Les joueuses de guitare le savent bien : plus la corde est courte, plus le son émis est aigu – et donc plus la fréquence est élevée. Plus la corde est longue, plus le son est grave – et la fréquence est basse. Or, une longueur, c’est un nombre. Ainsi, connecter le monde des sons et le monde des nombres devenait possible.
Dans la maison Pythagore, on décide de mettre tout cela en bonne forme. Ordre, précision, commensurabilité, les trois vertus qu’Aristote attribuera à la beauté et à la mathématique, dont on parlera plus amplement dans le chapitre sur l’art. Cela donnera naissance à la première gamme, baptisée « gamme de Pythagore », qui établit que quand on compare le son d’une corde d’une certaine longueur à celui d’une autre corde dont la longueur est la moitié de la première, ils « sonnent bien ensemble », à l’unisson. En effet, les deux sons se renforcent sans se gêner. De nos jours, l’expression consacrée est qu’ils sont « à l’octave l’un de l’autre ». Les deux sons sont par ailleurs nommés uniformément : do et do ; sol et sol, etc.
C’est le point de départ : un écart d’une octave entre deux notes, c’est quand les longueurs des cordes ont un rapport de 1 à 2. Pythagore réfléchit en longueur de cordes, mais nous, nous parlons en fréquences : monter d’une octave, c’est doubler la fréquence. On divise la longueur par deux : une octave. On divise par quatre : deux octaves. Et ainsi de suite. Afin de gagner en diversité, la quinte est introduite. C’est passer du do au sol, par exemple, soit multiplier la fréquence par 3/2. Autrement dit, on divise la longueur de la corde par 1,5. Ainsi, on attribue des fractions à tous les tons et demi-tons, pour faire toute la gamme que l’on connaît. Par exemple, du do au ré, on multiplie la fréquence par 9/8, etc.
Cependant, des subtilités existent. Par exemple, on apprend en solfège que douze quintes, cela fait exactement sept octaves. Est-ce exact ? Traduisons cela en nombres. Pour l’octave, on multiplie par 2 ; donc pour sept octaves, on multiplie par 2, sept fois. Monter de sept octaves, cela correspond à multiplier la fréquence par 27, soit par 128. Si la quinte, c’est multiplier la fréquence par 3/2, alors monter de douze quintes correspond à multiplier par la fréquence par (3/2)12, c’est-à-dire à peu près 129,75.
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À l’évidence, cela ne tombe pas vraiment juste. Aïe ! Pythagore est bien conscient de ce décalage, et il le théorise. Pour le contrôler, il modifie légèrement les demi-tons… et introduit un léger décalage, comme une petite triche. À l’instar d’un comptable qui s’apercevrait d’un gros problème dans son bilan et qui répartit l’erreur dans les différents postes de dépenses pour que cela ne se voie guère ! Le petit décalage est appelé « comma pythagoricien ». C’est très peu, un peu moins d’un huitième de ton. Il sauve la gamme de Pythagore, mais il y a un prix à payer : les transpositions ne sont pas parfaites. Si, par exemple, vous partez d’une mélodie en do et la transposez en ré, les écarts entre les notes de la mélodie ne seront pas exactement les mêmes !
Depuis Pythagore, la musique a évolué, d’autres gammes ont été introduites. Aux XVIIe et XVIIIe siècles, la gamme de Pythagore est délaissée au profit de la gamme dite tempérée, dans laquelle 12 quintes font exactement sept octaves. Un autre inconvénient apparaît, puisque les rapports de fréquences ne sont plus aussi simples qu’avec Pythagore. La quinte, par exemple, n’équivaut plus exactement à 3/2. C’est 2 à la puissance 7/12, qui s’écrit 27/12 et se dit aussi : « racine douzième de 2 à la puissance 7 ». Sur un piano, si vous jouez le do, puis le do dièse, les cordes frappées en second sont plus courtes que les cordes frappées en premier, d’un facteur racine douzième de 2 ; c’est ainsi que cela a été calculé… cela fait environ 1,059.
 
 
 
Qui aurait cru qu’on se mettrait à utiliser des racines douzièmes pour parler de musique ? En tout cas, ce qui compte, c’est qu’on voit les nombres derrière le son. Ce qui implique qu’on peut le mettre en mathématique.
Voici une représentation des sons émis par la chauve-souris. Dans cette série temporelle sont représentées les fréquences émises. Les hautes fréquences vers le haut, les basses fréquences vers le bas.
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Au début de la première ligne, on distingue une espèce de virgule. Cela représente un son qui est d’abord aigu, puis grave. Derrière se détache une sorte de petit halo : c’est l’écho que la chauve-souris doit analyser. La chauve-souris ne crie pas vraiment, elle émet plutôt une série de petites chansons.
Voyez aussi comment ces chansons varient dans le temps. Dans les lignes du bas, elles sont bien plus brèves et resserrées que celles de la première ligne.
Ces sons varient d’ailleurs d’une chauve-souris à une autre. Chaque espèce a sa façon de chanter. Et même au sein d’une espèce donnée, il existe des variations d’une région à l’autre. Des dialectes différents, en somme.
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PTERONOTUS PARNELLII
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SACCOPTERYX BILINEATA
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MOLOSSUS RUFUS
Pour toutes les espèces, on observe cette suite de petites chansons qui deviennent plus brèves et resserrées au cours du temps. Pourquoi la chauve-souris fait-elle cela ? Pourquoi chante-t-elle, au lieu d’émettre des petits cris tout simples ? Pour le comprendre, il va nous falloir aller plus loin dans l’analyse mathématique, et invoquer le pionnier de l’analyse du signal : Joseph Fourier.
Fourier fut un personnage extraordinaire : il a mené de front carrière dans la science et dans la haute administration ; ses travaux fondateurs ont ouvert de nouvelles ères aussi bien en mathématique qu’en ingénierie, et même en égyptologie. Nous le retrouverons dans d’autres leçons !
En 1822, il publie Théorie analytique de la chaleur, un ouvrage majeur dans lequel il étudie la façon dont la chaleur évolue dans un solide. Pour mener ces travaux, il développe une théorie révolutionnaire, dite analyse de Fourier, selon laquelle tout signal se décompose en une superposition de sinus et de cosinus.
Plongeons-nous dans la trigonométrie pour bien comprendre les fonctions sinus et cosinus. Traçons un cercle de rayon 1, prenons un angle thêta (θ) mesuré à partir de l’horizontale et le rayon dessiné par cet angle thêta. La projection de ce rayon sur la verticale, c’est le sinus de l’angle ; sa projection sur l’horizontale, c’est le cosinus.
[image: ]
Imaginons maintenant faire varier un point le long du cercle unité en reportant au fur et à mesure du temps la hauteur du point sur une courbe.
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Se dessine alors le tracé de la fonction sinus. En abscisse, l’angle ; en ordonnée, le sinus. Et cela donne une courbe illimitée appelée « sinusoïde ».
[image: ]
En faisant varier l’amplitude et la fréquence des oscillations, on obtient différentes courbes, qui correspondent à différentes fonctions. Toutes ces fonctions sont appelées des sinusoïdes et elles ne diffèrent les unes des autres que par trois paramètres : l’amplitude (oscillant plus ou moins fort), la fréquence (oscillant plus ou moins vite), et le décalage temporel (l’instant précis où on passe par la valeur nulle). Cela correspond respectivement à agrandir/rétrécir selon l’axe vertical ou selon l’axe horizontal, ou encore à bouger le graphe de la fonction vers la droite ou la gauche. C’est l’explication des graphiques montrant les sons doux et graves. Nous n’avons pas abordé le décalage temporel car notre oreille n’y est pas sensible.
Fourier explique que ces courbes, qui se ressemblent toutes, sont comme des signaux élémentaires, à l’image d’un alphabet qui nous permet d’écrire n’importe quel signal, aussi tordu soit-il. Par exemple, celui-ci correspond à une fonction f qui, à part être périodique, semble n’avoir vraiment rien d’intéressant :
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SIGNAL « UN PEU QUELCONQUE »
Ce signal est en fait la superposition de quatre courbes, ou quatre fonctions :
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sin(x)
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sin(2x)
[image: ]
sin(4x)
[image: ]
sin(8x)
Les quatre courbes ont des fréquences toutes différentes. La théorie de Fourier dit qu’en les combinant ensemble, avec pour chacune un coefficient spécifique – qu’on appelle leur poids –, on retrouve notre signal quelconque de tout à l’heure ! Cela s’écrit ainsi :
  f(x)  =  1sin(x)  +   1 2  sin(2x)  +   1 3  sin(4x)  +   1 5  sin(8x)
Dans cet exemple, la fonction de plus haute fréquence, celle qui oscille le plus vite, a le poids le plus petit : 1/5.
C’est le premier grand principe de l’analyse de Fourier :
Tout signal borné se décompose en sinus et en cosinus de différentes fréquences et avec différents poids.

En général, pour décomposer un signal sonore, il faudra une infinité de ces fonctions élémentaires, sinus ou cosinus. Cependant, Fourier nous apprend qu’on y arrivera toujours.
Second grand principe de cette analyse :
Plus le signal est lisse, moins les hautes fréquences comptent.

Cela signifie que plus le signal est lisse, plus le poids associé aux hautes fréquences est petit. À gauche, le signal est très irrégulier : peut-être est-ce un cours de Bourse. Les hautes fréquences jouent un rôle important, le poids ne sera pas très petit. À droite, une courbe tout en douceur, avec presque uniquement des basses fréquences. Les hautes fréquences auront des poids minuscules.
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Enfin, il existe un troisième grand principe, découvert plus tard :
Un signal ne peut pas être bien localisé à la fois en temps et en fréquence (principe d’incertitude).

En d’autres termes, si un signal vous parvient et qu’il est très bien localisé en temps, c’est-à-dire concentré sur une durée brève, il ne peut pas avoir une fréquence bien déterminée. Il ne sera pas associable à une note définie : pour le décrire, il faudra introduire des notes variées. Soit le son est très pur, avec une hauteur bien définie ; soit le son est bien bref. Mais on ne peut pas avoir les deux à la fois !
C’est ce qu’on appelle le « principe d’incertitude ». Il peut paraître un peu abstrait, ce principe, mais croyez-le ou non, la chauve-souris doit se battre chaque jour contre le principe d’incertitude pour survivre. Et cela fait des millions d’années qu’elle a trouvé une solution !
Pour le comprendre, mettons-nous dans la peau d’une chauve-souris qui a faim. Il nous faut repérer notre proie et déterminer sa position.
Commençons par un problème plus simple, et imaginons un mur, en face de nous, dont nous voulons connaître l’emplacement exact. Après tout, pour survivre, il nous faut aussi éviter les obstacles. Comment allons-nous faire ? Nous allons utiliser l’écho. En émettant une petite chanson très brève, à un instant donné, et en regardant combien de temps il faut avant que l’écho nous revienne. En fonction du temps écoulé, et si nous connaissons la vitesse du son, il est possible de déterminer la distance.
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MESURER LA POSITION AVEC LE TEMPS DE L’ÉCHO
On apprend à l’école que le son se propage à une vitesse d’environ 300 mètres par seconde. La chauve-souris est peut-être allée à l’école des chauves-souris, qui sait ? En tout cas, elle connaît bien la vitesse du son et n’a aucun mal à reconstituer la position du mur. S’il y a un centième de seconde entre le son et son écho, c’est que l’aller-retour a duré un centième de seconde, soit 3 mètres… donc le mur est à 1,5 mètre !
Nous avons maintenant une idée de la façon dont la chauve-souris mesure les distances, et donc les positions. Reste que la proie, elle, a une fâcheuse tendance à se déplacer. Si nous mesurons seulement sa position, le temps de la rejoindre, elle se sera échappée ! En conséquence, il est nécessaire de savoir dans quelle direction et à quelle vitesse elle se déplace. Sauf que la méthode de l’écho ne nous renseigne pas sur ce point. Pour résoudre ce problème, la chauve-souris, excellente physicienne, utilise un autre outil.
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